SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7125 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2-with-noPropaganda-multilabel-setfit-model")
# Run inference
preds = model("But the author is Bharath Ganesh.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 23.3972 | 129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3874 | - |
0.0135 | 50 | 0.3734 | - |
0.0270 | 100 | 0.2741 | - |
0.0405 | 150 | 0.2802 | - |
0.0539 | 200 | 0.2355 | - |
0.0674 | 250 | 0.2616 | - |
0.0809 | 300 | 0.262 | - |
0.0944 | 350 | 0.2302 | - |
0.1079 | 400 | 0.1962 | - |
0.1214 | 450 | 0.1438 | - |
0.1348 | 500 | 0.2001 | - |
0.1483 | 550 | 0.2126 | - |
0.1618 | 600 | 0.1244 | - |
0.1753 | 650 | 0.1968 | - |
0.1888 | 700 | 0.1473 | - |
0.2023 | 750 | 0.2407 | - |
0.2157 | 800 | 0.1607 | - |
0.2292 | 850 | 0.1376 | - |
0.2427 | 900 | 0.145 | - |
0.2562 | 950 | 0.1439 | - |
0.2697 | 1000 | 0.0418 | - |
0.2832 | 1050 | 0.0822 | - |
0.2967 | 1100 | 0.1042 | - |
0.3101 | 1150 | 0.0381 | - |
0.3236 | 1200 | 0.17 | - |
0.3371 | 1250 | 0.0253 | - |
0.3506 | 1300 | 0.1009 | - |
0.3641 | 1350 | 0.1355 | - |
0.3776 | 1400 | 0.0314 | - |
0.3910 | 1450 | 0.2185 | - |
0.4045 | 1500 | 0.0774 | - |
0.4180 | 1550 | 0.0512 | - |
0.4315 | 1600 | 0.0814 | - |
0.4450 | 1650 | 0.0169 | - |
0.4585 | 1700 | 0.0591 | - |
0.4720 | 1750 | 0.1232 | - |
0.4854 | 1800 | 0.0941 | - |
0.4989 | 1850 | 0.1024 | - |
0.5124 | 1900 | 0.0031 | - |
0.5259 | 1950 | 0.037 | - |
0.5394 | 2000 | 0.1418 | - |
0.5529 | 2050 | 0.0685 | - |
0.5663 | 2100 | 0.0326 | - |
0.5798 | 2150 | 0.0143 | - |
0.5933 | 2200 | 0.064 | - |
0.6068 | 2250 | 0.0612 | - |
0.6203 | 2300 | 0.0689 | - |
0.6338 | 2350 | 0.1402 | - |
0.6472 | 2400 | 0.288 | - |
0.6607 | 2450 | 0.0075 | - |
0.6742 | 2500 | 0.0785 | - |
0.6877 | 2550 | 0.0339 | - |
0.7012 | 2600 | 0.0668 | - |
0.7147 | 2650 | 0.0319 | - |
0.7282 | 2700 | 0.0622 | - |
0.7416 | 2750 | 0.1169 | - |
0.7551 | 2800 | 0.0249 | - |
0.7686 | 2850 | 0.0218 | - |
0.7821 | 2900 | 0.0621 | - |
0.7956 | 2950 | 0.0698 | - |
0.8091 | 3000 | 0.0562 | - |
0.8225 | 3050 | 0.0412 | - |
0.8360 | 3100 | 0.0048 | - |
0.8495 | 3150 | 0.0085 | - |
0.8630 | 3200 | 0.0122 | - |
0.8765 | 3250 | 0.0387 | - |
0.8900 | 3300 | 0.0053 | - |
0.9035 | 3350 | 0.0032 | - |
0.9169 | 3400 | 0.0156 | - |
0.9304 | 3450 | 0.0013 | - |
0.9439 | 3500 | 0.001 | - |
0.9574 | 3550 | 0.0009 | - |
0.9709 | 3600 | 0.0025 | - |
0.9844 | 3650 | 0.0006 | - |
0.9978 | 3700 | 0.0832 | - |
1.0 | 3708 | - | 0.2776 |
1.0113 | 3750 | 0.0735 | - |
1.0248 | 3800 | 0.0053 | - |
1.0383 | 3850 | 0.0614 | - |
1.0518 | 3900 | 0.0005 | - |
1.0653 | 3950 | 0.0046 | - |
1.0787 | 4000 | 0.0024 | - |
1.0922 | 4050 | 0.0004 | - |
1.1057 | 4100 | 0.0016 | - |
1.1192 | 4150 | 0.0789 | - |
1.1327 | 4200 | 0.0016 | - |
1.1462 | 4250 | 0.0018 | - |
1.1597 | 4300 | 0.0005 | - |
1.1731 | 4350 | 0.0051 | - |
1.1866 | 4400 | 0.0139 | - |
1.2001 | 4450 | 0.0021 | - |
1.2136 | 4500 | 0.0064 | - |
1.2271 | 4550 | 0.0025 | - |
1.2406 | 4600 | 0.0054 | - |
1.2540 | 4650 | 0.0022 | - |
1.2675 | 4700 | 0.0734 | - |
1.2810 | 4750 | 0.026 | - |
1.2945 | 4800 | 0.0004 | - |
1.3080 | 4850 | 0.0574 | - |
1.3215 | 4900 | 0.0043 | - |
1.3350 | 4950 | 0.0975 | - |
1.3484 | 5000 | 0.0125 | - |
1.3619 | 5050 | 0.0045 | - |
1.3754 | 5100 | 0.0011 | - |
1.3889 | 5150 | 0.0061 | - |
1.4024 | 5200 | 0.0004 | - |
1.4159 | 5250 | 0.0278 | - |
1.4293 | 5300 | 0.005 | - |
1.4428 | 5350 | 0.0302 | - |
1.4563 | 5400 | 0.0341 | - |
1.4698 | 5450 | 0.0007 | - |
1.4833 | 5500 | 0.0128 | - |
1.4968 | 5550 | 0.0459 | - |
1.5102 | 5600 | 0.0128 | - |
1.5237 | 5650 | 0.0003 | - |
1.5372 | 5700 | 0.004 | - |
1.5507 | 5750 | 0.0005 | - |
1.5642 | 5800 | 0.0005 | - |
1.5777 | 5850 | 0.001 | - |
1.5912 | 5900 | 0.0069 | - |
1.6046 | 5950 | 0.0124 | - |
1.6181 | 6000 | 0.0026 | - |
1.6316 | 6050 | 0.0143 | - |
1.6451 | 6100 | 0.0005 | - |
1.6586 | 6150 | 0.0362 | - |
1.6721 | 6200 | 0.0002 | - |
1.6855 | 6250 | 0.0608 | - |
1.6990 | 6300 | 0.0006 | - |
1.7125 | 6350 | 0.0003 | - |
1.7260 | 6400 | 0.0041 | - |
1.7395 | 6450 | 0.0045 | - |
1.7530 | 6500 | 0.0005 | - |
1.7665 | 6550 | 0.0014 | - |
1.7799 | 6600 | 0.0004 | - |
1.7934 | 6650 | 0.0211 | - |
1.8069 | 6700 | 0.0002 | - |
1.8204 | 6750 | 0.0048 | - |
1.8339 | 6800 | 0.0368 | - |
1.8474 | 6850 | 0.0107 | - |
1.8608 | 6900 | 0.0045 | - |
1.8743 | 6950 | 0.0062 | - |
1.8878 | 7000 | 0.0003 | - |
1.9013 | 7050 | 0.0001 | - |
1.9148 | 7100 | 0.0096 | - |
1.9283 | 7150 | 0.0008 | - |
1.9417 | 7200 | 0.0184 | - |
1.9552 | 7250 | 0.0006 | - |
1.9687 | 7300 | 0.0291 | - |
1.9822 | 7350 | 0.0335 | - |
1.9957 | 7400 | 0.0149 | - |
2.0 | 7416 | - | 0.2666 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 11
Inference API (serverless) has been turned off for this model.