magnum-v4-123b-exl2 / README.md
lucyknada's picture
add readme dataset metadata (#1)
5b05c07 verified
---
license: other
license_name: mrl
language:
- en
tags:
- chat
pipeline_tag: text-generation
library_name: transformers
datasets:
- anthracite-org/c2_logs_16k_mistral-large_v1.2
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
---
## This repo contains EXL2 quants of the model. If you need the original weights, please find them [here](https://huggingface.co/anthracite-org/magnum-v4-123b).
## Base repo only contains the measurement file, see revisions for your quant of choice.
- [measurement.json](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/main)
- [3.0bpw](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/3.0bpw)
- [4.0bpw](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/4.0bpw)
- [5.0bpw](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/5.0bpw)
- [6.0bpw](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/6.0bpw)
- [8.0bpw](https://huggingface.co/anthracite-org/magnum-v4-123b-exl2/tree/8.0bpw)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/PeLc_rlHB98Hw4eojizIi.png)
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of [mistralai/Mistral-Large-Instruct-2407](https://huggingface.co/mistralai/Mistral-Large-Instruct-2407).
## Prompting
A typical input would look like this:
```py
<s>[INST] SYSTEM MESSAGE\nUSER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]
```
## SillyTavern templates
Below are Instruct and Context templates for use within SillyTavern.
<details><summary>context template</summary>
```yaml
default SillyTavern template works fine
```
</details><br>
<details><summary>instruct template</summary>
```yaml
default SillyTavern template works fine
```
</details><br>
## Axolotl config
<details><summary>See axolotl config</summary>
```yaml
base_model: mistralai/Mistral-Large-Instruct-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/c2_logs_16k_mistral-large_v1.2
type: sharegpt
conversation: mistral
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
conversation: mistral
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: sharegpt
conversation: mistral
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: mistral
- path: anthracite-org/kalo_opus_misc_240827
type: sharegpt
conversation: mistral
- path: anthracite-org/kalo_misc_part2
type: sharegpt
conversation: mistral
#chat_template: chatml
shuffle_merged_datasets: true
#default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: ./data/magnum-123b-data
val_set_size: 0.0
output_dir: ./data/123b-fft-out
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: 123b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: alter-attempt-04
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0000015
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
## Credits
We'd like to thank [Eric Hartford](https://huggingface.co/ehartford) for sponsoring the compute for this train.
We would also like to thank all members of Anthracite who made this finetune possible.
## Datasets
- [anthracite-org/c2_logs_16k_mistral-large_v1.2](https://huggingface.co/datasets/anthracite-org/c2_logs_16k_mistral-large_v1.2)
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal)
- [lodrick-the-lafted/kalo-opus-instruct-3k-filtered](https://huggingface.co/datasets/lodrick-the-lafted/kalo-opus-instruct-3k-filtered)
- [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed)
- [anthracite-org/kalo_opus_misc_240827](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827)
- [anthracite-org/kalo_misc_part2](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2)
## Training
We used 8x mi300x GPUs graciously provided by [Eric Hartford](https://huggingface.co/ehartford) for the full-parameter fine-tuning of the model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
## Safety
...