stanford-deidentifier-base-finetuned-ner
This model is a fine-tuned version of StanfordAIMI/stanford-deidentifier-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6522
- 0 Precision: 0.9766
- 0 Recall: 0.9646
- 0 F1-score: 0.9706
- 1 Precision: 0.8268
- 1 Recall: 0.8689
- 1 F1-score: 0.8473
- 2 Precision: 0.8419
- 2 Recall: 0.8916
- 2 F1-score: 0.8660
- 3 Precision: 0.8394
- 3 Recall: 0.8975
- 3 F1-score: 0.8675
- Accuracy: 0.9507
- Macro avg Precision: 0.8712
- Macro avg Recall: 0.9057
- Macro avg F1-score: 0.8878
- Weighted avg Precision: 0.9521
- Weighted avg Recall: 0.9507
- Weighted avg F1-score: 0.9513
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 1 Precision | 1 Recall | 1 F1-score | 2 Precision | 2 Recall | 2 F1-score | 3 Precision | 3 Recall | 3 F1-score | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 67 | 0.2686 | 0.9927 | 0.8966 | 0.9422 | 0.5702 | 0.9369 | 0.7089 | 0.5731 | 0.9458 | 0.7138 | 0.7626 | 0.8809 | 0.8175 | 0.9003 | 0.7246 | 0.9151 | 0.7956 | 0.9322 | 0.9003 | 0.9091 |
No log | 2.0 | 134 | 0.2344 | 0.9922 | 0.9195 | 0.9544 | 0.6492 | 0.9296 | 0.7645 | 0.6989 | 0.9261 | 0.7966 | 0.7478 | 0.9529 | 0.8380 | 0.9226 | 0.7720 | 0.9320 | 0.8384 | 0.9411 | 0.9226 | 0.9275 |
No log | 3.0 | 201 | 0.2085 | 0.9944 | 0.9139 | 0.9525 | 0.6088 | 0.9709 | 0.7484 | 0.7197 | 0.9360 | 0.8137 | 0.7834 | 0.9418 | 0.8553 | 0.9207 | 0.7766 | 0.9407 | 0.8425 | 0.9430 | 0.9207 | 0.9265 |
No log | 4.0 | 268 | 0.2154 | 0.9925 | 0.9342 | 0.9625 | 0.6791 | 0.9709 | 0.7992 | 0.7966 | 0.9261 | 0.8565 | 0.8028 | 0.9474 | 0.8691 | 0.9374 | 0.8178 | 0.9446 | 0.8718 | 0.9506 | 0.9374 | 0.9408 |
No log | 5.0 | 335 | 0.2524 | 0.9892 | 0.9381 | 0.9630 | 0.6934 | 0.9442 | 0.7996 | 0.7602 | 0.9212 | 0.8330 | 0.8200 | 0.9335 | 0.8731 | 0.9376 | 0.8157 | 0.9342 | 0.8671 | 0.9486 | 0.9376 | 0.9407 |
No log | 6.0 | 402 | 0.2449 | 0.9908 | 0.9383 | 0.9638 | 0.7013 | 0.9515 | 0.8074 | 0.7705 | 0.9261 | 0.8412 | 0.8052 | 0.9391 | 0.8670 | 0.9389 | 0.8169 | 0.9387 | 0.8698 | 0.9499 | 0.9389 | 0.9418 |
No log | 7.0 | 469 | 0.2695 | 0.9877 | 0.9426 | 0.9646 | 0.7282 | 0.9102 | 0.8091 | 0.7519 | 0.9557 | 0.8416 | 0.8153 | 0.9418 | 0.8740 | 0.9406 | 0.8208 | 0.9376 | 0.8723 | 0.9493 | 0.9406 | 0.9431 |
0.196 | 8.0 | 536 | 0.3949 | 0.9802 | 0.9596 | 0.9698 | 0.7948 | 0.8835 | 0.8368 | 0.8190 | 0.8916 | 0.8538 | 0.8430 | 0.9224 | 0.8810 | 0.9493 | 0.8592 | 0.9143 | 0.8853 | 0.9521 | 0.9493 | 0.9503 |
0.196 | 9.0 | 603 | 0.3717 | 0.9810 | 0.9581 | 0.9694 | 0.7918 | 0.8859 | 0.8362 | 0.8097 | 0.9015 | 0.8531 | 0.8291 | 0.9141 | 0.8696 | 0.9480 | 0.8529 | 0.9149 | 0.8821 | 0.9514 | 0.9480 | 0.9492 |
0.196 | 10.0 | 670 | 0.3790 | 0.9808 | 0.9509 | 0.9656 | 0.7426 | 0.9102 | 0.8179 | 0.7895 | 0.8867 | 0.8353 | 0.8264 | 0.8837 | 0.8541 | 0.9413 | 0.8348 | 0.9079 | 0.8682 | 0.9468 | 0.9413 | 0.9431 |
0.196 | 11.0 | 737 | 0.4844 | 0.9738 | 0.9671 | 0.9704 | 0.8519 | 0.8519 | 0.8519 | 0.8389 | 0.8719 | 0.8551 | 0.8286 | 0.8837 | 0.8552 | 0.9500 | 0.8733 | 0.8937 | 0.8832 | 0.9508 | 0.9500 | 0.9503 |
0.196 | 12.0 | 804 | 0.3634 | 0.9858 | 0.9515 | 0.9684 | 0.7669 | 0.9102 | 0.8324 | 0.8161 | 0.8966 | 0.8545 | 0.8103 | 0.9584 | 0.8782 | 0.9470 | 0.8448 | 0.9292 | 0.8834 | 0.9526 | 0.9470 | 0.9486 |
0.196 | 13.0 | 871 | 0.5154 | 0.9773 | 0.9663 | 0.9718 | 0.8460 | 0.8665 | 0.8561 | 0.8411 | 0.8867 | 0.8633 | 0.8372 | 0.9114 | 0.8727 | 0.9526 | 0.8754 | 0.9077 | 0.8910 | 0.9539 | 0.9526 | 0.9531 |
0.196 | 14.0 | 938 | 0.4340 | 0.9827 | 0.9605 | 0.9715 | 0.8125 | 0.8835 | 0.8465 | 0.8251 | 0.9064 | 0.8638 | 0.8297 | 0.9446 | 0.8834 | 0.9519 | 0.8625 | 0.9237 | 0.8913 | 0.9549 | 0.9519 | 0.9529 |
0.0268 | 15.0 | 1005 | 0.4523 | 0.9818 | 0.9588 | 0.9702 | 0.7996 | 0.8811 | 0.8383 | 0.8153 | 0.8916 | 0.8518 | 0.8293 | 0.9418 | 0.8820 | 0.9496 | 0.8565 | 0.9183 | 0.8856 | 0.9529 | 0.9496 | 0.9507 |
0.0268 | 16.0 | 1072 | 0.4877 | 0.9777 | 0.9628 | 0.9702 | 0.8129 | 0.8859 | 0.8479 | 0.8219 | 0.8867 | 0.8531 | 0.8417 | 0.8837 | 0.8622 | 0.9495 | 0.8635 | 0.9048 | 0.8833 | 0.9514 | 0.9495 | 0.9502 |
0.0268 | 17.0 | 1139 | 0.5068 | 0.9817 | 0.9609 | 0.9712 | 0.8118 | 0.8689 | 0.8394 | 0.8311 | 0.8966 | 0.8626 | 0.8313 | 0.9557 | 0.8892 | 0.9516 | 0.8640 | 0.9205 | 0.8906 | 0.9543 | 0.9516 | 0.9525 |
0.0268 | 18.0 | 1206 | 0.5995 | 0.9725 | 0.9684 | 0.9705 | 0.8430 | 0.8471 | 0.8450 | 0.8429 | 0.8719 | 0.8571 | 0.8387 | 0.8643 | 0.8513 | 0.9495 | 0.8743 | 0.8879 | 0.8810 | 0.9499 | 0.9495 | 0.9497 |
0.0268 | 19.0 | 1273 | 0.6119 | 0.9750 | 0.9663 | 0.9706 | 0.8401 | 0.8544 | 0.8472 | 0.8436 | 0.8768 | 0.8599 | 0.8299 | 0.8920 | 0.8598 | 0.9502 | 0.8721 | 0.8974 | 0.8844 | 0.9512 | 0.9502 | 0.9506 |
0.0268 | 20.0 | 1340 | 0.6114 | 0.9740 | 0.9667 | 0.9703 | 0.8353 | 0.8617 | 0.8483 | 0.8585 | 0.8670 | 0.8627 | 0.8346 | 0.8809 | 0.8571 | 0.9500 | 0.8756 | 0.8941 | 0.8846 | 0.9508 | 0.9500 | 0.9504 |
0.0268 | 21.0 | 1407 | 0.5467 | 0.9800 | 0.9641 | 0.9720 | 0.8284 | 0.8908 | 0.8585 | 0.8436 | 0.8768 | 0.8599 | 0.8392 | 0.9252 | 0.8801 | 0.9532 | 0.8728 | 0.9142 | 0.8926 | 0.9551 | 0.9532 | 0.9539 |
0.0268 | 22.0 | 1474 | 0.5370 | 0.9779 | 0.9618 | 0.9697 | 0.8266 | 0.8908 | 0.8575 | 0.8257 | 0.8867 | 0.8551 | 0.8235 | 0.8920 | 0.8564 | 0.9495 | 0.8634 | 0.9078 | 0.8847 | 0.9515 | 0.9495 | 0.9502 |
0.007 | 23.0 | 1541 | 0.6169 | 0.9739 | 0.9658 | 0.9699 | 0.8480 | 0.8665 | 0.8571 | 0.8429 | 0.8719 | 0.8571 | 0.8203 | 0.8726 | 0.8456 | 0.9493 | 0.8713 | 0.8942 | 0.8824 | 0.9503 | 0.9493 | 0.9497 |
0.007 | 24.0 | 1608 | 0.6113 | 0.9744 | 0.9658 | 0.9701 | 0.8269 | 0.8811 | 0.8531 | 0.8725 | 0.8768 | 0.8747 | 0.8289 | 0.8587 | 0.8435 | 0.9496 | 0.8757 | 0.8956 | 0.8854 | 0.9507 | 0.9496 | 0.9501 |
0.007 | 25.0 | 1675 | 0.5969 | 0.9775 | 0.9656 | 0.9715 | 0.8440 | 0.8665 | 0.8551 | 0.8161 | 0.8966 | 0.8545 | 0.8398 | 0.9003 | 0.8690 | 0.9518 | 0.8694 | 0.9072 | 0.8875 | 0.9532 | 0.9518 | 0.9523 |
0.007 | 26.0 | 1742 | 0.5509 | 0.9811 | 0.9620 | 0.9714 | 0.8288 | 0.8811 | 0.8541 | 0.8249 | 0.8818 | 0.8524 | 0.8180 | 0.9335 | 0.8719 | 0.9514 | 0.8632 | 0.9146 | 0.8875 | 0.9540 | 0.9514 | 0.9523 |
0.007 | 27.0 | 1809 | 0.5003 | 0.9818 | 0.9567 | 0.9691 | 0.7780 | 0.8932 | 0.8316 | 0.8243 | 0.9015 | 0.8612 | 0.8304 | 0.9224 | 0.8740 | 0.9479 | 0.8536 | 0.9184 | 0.8840 | 0.9517 | 0.9479 | 0.9491 |
0.007 | 28.0 | 1876 | 0.5675 | 0.9806 | 0.9611 | 0.9708 | 0.8039 | 0.8956 | 0.8473 | 0.8429 | 0.8719 | 0.8571 | 0.8275 | 0.9169 | 0.8699 | 0.9503 | 0.8637 | 0.9114 | 0.8863 | 0.9530 | 0.9503 | 0.9513 |
0.007 | 29.0 | 1943 | 0.6114 | 0.9806 | 0.9616 | 0.9710 | 0.8053 | 0.8835 | 0.8426 | 0.8551 | 0.8719 | 0.8634 | 0.8260 | 0.9335 | 0.8765 | 0.9509 | 0.8667 | 0.9126 | 0.8884 | 0.9535 | 0.9509 | 0.9518 |
0.0025 | 30.0 | 2010 | 0.6773 | 0.9741 | 0.9654 | 0.9698 | 0.8172 | 0.8786 | 0.8468 | 0.8737 | 0.8522 | 0.8628 | 0.8329 | 0.8698 | 0.8509 | 0.9489 | 0.8745 | 0.8915 | 0.8826 | 0.9501 | 0.9489 | 0.9494 |
0.0025 | 31.0 | 2077 | 0.5380 | 0.9791 | 0.9601 | 0.9695 | 0.7996 | 0.8908 | 0.8427 | 0.8326 | 0.8818 | 0.8565 | 0.8321 | 0.9058 | 0.8674 | 0.9488 | 0.8608 | 0.9096 | 0.8840 | 0.9514 | 0.9488 | 0.9497 |
0.0025 | 32.0 | 2144 | 0.5114 | 0.9825 | 0.9601 | 0.9712 | 0.8102 | 0.8908 | 0.8486 | 0.8296 | 0.9113 | 0.8685 | 0.8280 | 0.9335 | 0.8776 | 0.9516 | 0.8626 | 0.9239 | 0.8915 | 0.9546 | 0.9516 | 0.9526 |
0.0025 | 33.0 | 2211 | 0.5792 | 0.9785 | 0.9611 | 0.9697 | 0.8013 | 0.8908 | 0.8437 | 0.8429 | 0.8719 | 0.8571 | 0.8286 | 0.8975 | 0.8617 | 0.9488 | 0.8628 | 0.9053 | 0.8831 | 0.9512 | 0.9488 | 0.9496 |
0.0025 | 34.0 | 2278 | 0.6516 | 0.9748 | 0.9658 | 0.9703 | 0.8361 | 0.8665 | 0.8510 | 0.8396 | 0.8768 | 0.8578 | 0.8342 | 0.8781 | 0.8556 | 0.9498 | 0.8712 | 0.8968 | 0.8837 | 0.9509 | 0.9498 | 0.9503 |
0.0025 | 35.0 | 2345 | 0.5294 | 0.9823 | 0.9599 | 0.9709 | 0.8071 | 0.8835 | 0.8436 | 0.8227 | 0.8916 | 0.8558 | 0.8301 | 0.9474 | 0.8849 | 0.9511 | 0.8606 | 0.9206 | 0.8888 | 0.9541 | 0.9511 | 0.9521 |
0.0025 | 36.0 | 2412 | 0.6674 | 0.9759 | 0.9665 | 0.9711 | 0.8469 | 0.8592 | 0.8530 | 0.8364 | 0.8818 | 0.8585 | 0.8303 | 0.8947 | 0.8613 | 0.9511 | 0.8724 | 0.9006 | 0.8860 | 0.9522 | 0.9511 | 0.9515 |
0.0025 | 37.0 | 2479 | 0.6354 | 0.9753 | 0.9626 | 0.9689 | 0.8141 | 0.8714 | 0.8417 | 0.8310 | 0.8719 | 0.8510 | 0.8329 | 0.8837 | 0.8575 | 0.9477 | 0.8633 | 0.8974 | 0.8798 | 0.9493 | 0.9477 | 0.9483 |
0.0014 | 38.0 | 2546 | 0.6787 | 0.9746 | 0.9658 | 0.9702 | 0.8526 | 0.8422 | 0.8474 | 0.8241 | 0.8768 | 0.8496 | 0.8253 | 0.9030 | 0.8624 | 0.9496 | 0.8691 | 0.8970 | 0.8824 | 0.9508 | 0.9496 | 0.9500 |
0.0014 | 39.0 | 2613 | 0.7050 | 0.9739 | 0.9646 | 0.9692 | 0.8279 | 0.8641 | 0.8456 | 0.8462 | 0.8670 | 0.8564 | 0.8303 | 0.8809 | 0.8548 | 0.9484 | 0.8696 | 0.8941 | 0.8815 | 0.9495 | 0.9484 | 0.9489 |
0.0014 | 40.0 | 2680 | 0.6279 | 0.9781 | 0.9618 | 0.9699 | 0.8205 | 0.8762 | 0.8474 | 0.8174 | 0.8818 | 0.8483 | 0.8278 | 0.9058 | 0.8651 | 0.9491 | 0.8609 | 0.9064 | 0.8827 | 0.9512 | 0.9491 | 0.9499 |
0.0014 | 41.0 | 2747 | 0.6812 | 0.9779 | 0.9658 | 0.9719 | 0.8436 | 0.8641 | 0.8537 | 0.8333 | 0.8867 | 0.8592 | 0.8333 | 0.9141 | 0.8719 | 0.9523 | 0.8721 | 0.9077 | 0.8892 | 0.9538 | 0.9523 | 0.9528 |
0.0014 | 42.0 | 2814 | 0.6036 | 0.9804 | 0.9594 | 0.9698 | 0.7898 | 0.9029 | 0.8426 | 0.8443 | 0.8818 | 0.8627 | 0.8295 | 0.9030 | 0.8647 | 0.9489 | 0.8610 | 0.9118 | 0.8849 | 0.9520 | 0.9489 | 0.9500 |
0.0014 | 43.0 | 2881 | 0.6358 | 0.9779 | 0.9622 | 0.9700 | 0.8075 | 0.8859 | 0.8449 | 0.8524 | 0.8818 | 0.8668 | 0.8329 | 0.8975 | 0.864 | 0.9496 | 0.8677 | 0.9069 | 0.8864 | 0.9517 | 0.9496 | 0.9504 |
0.0014 | 44.0 | 2948 | 0.6128 | 0.98 | 0.9626 | 0.9712 | 0.8121 | 0.8811 | 0.8452 | 0.8426 | 0.8966 | 0.8687 | 0.8384 | 0.9197 | 0.8771 | 0.9516 | 0.8683 | 0.9150 | 0.8906 | 0.9538 | 0.9516 | 0.9524 |
0.001 | 45.0 | 3015 | 0.7238 | 0.9744 | 0.9663 | 0.9703 | 0.8318 | 0.8641 | 0.8476 | 0.8689 | 0.8818 | 0.8753 | 0.8373 | 0.8837 | 0.8598 | 0.9505 | 0.8781 | 0.8989 | 0.8883 | 0.9515 | 0.9505 | 0.9509 |
0.001 | 46.0 | 3082 | 0.5885 | 0.9811 | 0.9620 | 0.9714 | 0.8157 | 0.8811 | 0.8471 | 0.8161 | 0.8966 | 0.8545 | 0.8421 | 0.9307 | 0.8842 | 0.9518 | 0.8638 | 0.9176 | 0.8893 | 0.9542 | 0.9518 | 0.9526 |
0.001 | 47.0 | 3149 | 0.6924 | 0.9744 | 0.9654 | 0.9699 | 0.8245 | 0.8665 | 0.8450 | 0.8436 | 0.8768 | 0.8599 | 0.8373 | 0.8698 | 0.8533 | 0.9489 | 0.8699 | 0.8946 | 0.8820 | 0.9500 | 0.9489 | 0.9494 |
0.001 | 48.0 | 3216 | 0.5978 | 0.9798 | 0.9609 | 0.9702 | 0.8040 | 0.8859 | 0.8430 | 0.8287 | 0.8818 | 0.8544 | 0.8333 | 0.9141 | 0.8719 | 0.9496 | 0.8614 | 0.9107 | 0.8849 | 0.9522 | 0.9496 | 0.9505 |
0.001 | 49.0 | 3283 | 0.5363 | 0.9823 | 0.9592 | 0.9706 | 0.8013 | 0.8908 | 0.8437 | 0.8222 | 0.9113 | 0.8645 | 0.8313 | 0.9280 | 0.8770 | 0.9505 | 0.8593 | 0.9223 | 0.8889 | 0.9537 | 0.9505 | 0.9516 |
0.001 | 50.0 | 3350 | 0.5867 | 0.9793 | 0.9616 | 0.9704 | 0.8093 | 0.8859 | 0.8459 | 0.8265 | 0.8916 | 0.8578 | 0.8363 | 0.9058 | 0.8697 | 0.9500 | 0.8629 | 0.9112 | 0.8859 | 0.9524 | 0.9500 | 0.9508 |
0.001 | 51.0 | 3417 | 0.6383 | 0.9775 | 0.9643 | 0.9709 | 0.8238 | 0.8738 | 0.8481 | 0.8404 | 0.8818 | 0.8606 | 0.8355 | 0.9003 | 0.8667 | 0.9507 | 0.8693 | 0.9050 | 0.8865 | 0.9523 | 0.9507 | 0.9513 |
0.001 | 52.0 | 3484 | 0.6261 | 0.9779 | 0.9626 | 0.9702 | 0.8071 | 0.8835 | 0.8436 | 0.8436 | 0.8768 | 0.8599 | 0.8346 | 0.8947 | 0.8636 | 0.9495 | 0.8658 | 0.9044 | 0.8843 | 0.9515 | 0.9495 | 0.9502 |
0.0008 | 53.0 | 3551 | 0.6686 | 0.9763 | 0.9663 | 0.9712 | 0.8361 | 0.8665 | 0.8510 | 0.8647 | 0.8818 | 0.8732 | 0.8308 | 0.8975 | 0.8628 | 0.9516 | 0.8770 | 0.9030 | 0.8896 | 0.9528 | 0.9516 | 0.9521 |
0.0008 | 54.0 | 3618 | 0.6354 | 0.9785 | 0.9641 | 0.9713 | 0.8291 | 0.8714 | 0.8497 | 0.8333 | 0.8867 | 0.8592 | 0.8333 | 0.9141 | 0.8719 | 0.9514 | 0.8686 | 0.9091 | 0.8880 | 0.9532 | 0.9514 | 0.9521 |
0.0008 | 55.0 | 3685 | 0.6611 | 0.9758 | 0.9650 | 0.9704 | 0.8287 | 0.8689 | 0.8483 | 0.8483 | 0.8818 | 0.8647 | 0.8338 | 0.8892 | 0.8606 | 0.9502 | 0.8717 | 0.9012 | 0.8860 | 0.9515 | 0.9502 | 0.9507 |
0.0008 | 56.0 | 3752 | 0.6380 | 0.9766 | 0.9637 | 0.9701 | 0.8200 | 0.8738 | 0.8461 | 0.8451 | 0.8867 | 0.8654 | 0.8342 | 0.8920 | 0.8621 | 0.9498 | 0.8690 | 0.9040 | 0.8859 | 0.9514 | 0.9498 | 0.9504 |
0.0008 | 57.0 | 3819 | 0.6418 | 0.9768 | 0.9635 | 0.9701 | 0.8182 | 0.8738 | 0.8451 | 0.8419 | 0.8916 | 0.8660 | 0.8390 | 0.8947 | 0.8660 | 0.9500 | 0.8690 | 0.9059 | 0.8868 | 0.9516 | 0.9500 | 0.9506 |
0.0008 | 58.0 | 3886 | 0.6478 | 0.9770 | 0.9635 | 0.9702 | 0.8182 | 0.8738 | 0.8451 | 0.8419 | 0.8916 | 0.8660 | 0.8394 | 0.8975 | 0.8675 | 0.9502 | 0.8691 | 0.9066 | 0.8872 | 0.9518 | 0.9502 | 0.9508 |
0.0008 | 59.0 | 3953 | 0.6498 | 0.9766 | 0.9643 | 0.9705 | 0.8249 | 0.8689 | 0.8463 | 0.8419 | 0.8916 | 0.8660 | 0.8394 | 0.8975 | 0.8675 | 0.9505 | 0.8707 | 0.9056 | 0.8876 | 0.9520 | 0.9505 | 0.9511 |
0.0006 | 60.0 | 4020 | 0.6522 | 0.9766 | 0.9646 | 0.9706 | 0.8268 | 0.8689 | 0.8473 | 0.8419 | 0.8916 | 0.8660 | 0.8394 | 0.8975 | 0.8675 | 0.9507 | 0.8712 | 0.9057 | 0.8878 | 0.9521 | 0.9507 | 0.9513 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for antoineedy/stanford-deidentifier-base-finetuned-ner
Base model
StanfordAIMI/stanford-deidentifier-base