speech-test's picture
Add model card
56a64b1
metadata
language: tt
datasets:
  - common_voice
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: Tatar XLSR Wav2Vec2 Large 53 by Anton Lozhkov
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice tt
          type: common_voice
          args: tt
        metrics:
          - name: Test WER
            type: wer
            value: 26.76

Wav2Vec2-Large-XLSR-53-Tatar

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Tatar using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "tt", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Tatar test data of Common Voice.

import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

# Download the raw data instead of using HF datasets to save disk space 
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/tt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model.to("cuda")

cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/tt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/tt/clips/"

def clean_sentence(sent):
    sent = sent.lower()
    # 'ё' is equivalent to 'е'
    sent = sent.replace('ё', 'е')
    # replace non-alpha characters with space
    sent = "".join(ch if ch.isalpha() else " " for ch in sent)
    # remove repeated spaces
    sent = " ".join(sent.split())
    return sent

targets = []
preds = []

for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
    row["sentence"] = clean_sentence(row["sentence"])
    speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
    resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
    row["speech"] = resampler(speech_array).squeeze().numpy()

    inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)

    targets.append(row["sentence"])
    preds.append(processor.batch_decode(pred_ids)[0])

print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))

Test Result: 26.76 %

Training

The Common Voice train and validation datasets were used for training.