metadata
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
model-index:
- name: XLS-R-1B - Hindi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: hi
metrics:
- name: Test WER
type: wer
value: 15.899
- name: Test CER
type: cer
value: 5.83
XLS-R-1B - Hindi
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6921
- Wer: 0.3547
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.0674 | 2.07 | 400 | 1.3411 | 0.8835 |
1.324 | 4.15 | 800 | 0.9311 | 0.7142 |
1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 |
1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 |
1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 |
1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 |
1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 |
1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 |
0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 |
0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 |
0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 |
0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 |
0.844 | 26.94 | 5200 | 0.6782 | 0.3949 |
0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 |
0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 |
0.793 | 33.16 | 6400 | 0.7120 | 0.3831 |
0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 |
0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 |
0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 |
0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 |
0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 |
0.658 | 45.6 | 8800 | 0.6833 | 0.3580 |
0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 |
0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "तुम्हारे पास तीन महीने बचे हैं"
Eval results on Common Voice 8 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
26.209 | 15.899 |