librarian-bot's picture
Librarian Bot: Add base_model information to model
3f6ca57
|
raw
history blame
2.78 kB
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_9_0
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_9_0
metrics:
  - wer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: XLS-R-300M - Urdu
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice 9
          type: mozilla-foundation/common_voice_9_0
          args: ur
        metrics:
          - type: wer
            value: 23.75
            name: Test WER
          - type: cer
            value: 8.31
            name: Test CER

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - UR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4147
  • Wer: 0.3172
  • Cer: 0.1050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 5108
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.2894 7.83 400 3.1501 1.0 1.0
1.8586 15.68 800 0.8871 0.6721 0.2402
1.3431 23.52 1200 0.5813 0.5502 0.1939
1.2052 31.37 1600 0.4956 0.4788 0.1665
1.1097 39.21 2000 0.4447 0.4143 0.1397
1.0528 47.06 2400 0.4439 0.3961 0.1333
0.9939 54.89 2800 0.4348 0.4014 0.1379
0.9441 62.74 3200 0.4236 0.3653 0.1223
0.913 70.58 3600 0.4309 0.3475 0.1157
0.8678 78.43 4000 0.4270 0.3337 0.1110
0.8414 86.27 4400 0.4158 0.3220 0.1070
0.817 94.12 4800 0.4185 0.3231 0.1072

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.1.dev0
  • Tokenizers 0.12.1