whisper-large-v2-mr / README.md
anuragshas's picture
update model card README.md
44d20c0
metadata
language:
  - mr
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large-v2 Marathi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 mr
          type: mozilla-foundation/common_voice_11_0
          config: mr
          split: test
          args: mr
        metrics:
          - name: Wer
            type: wer
            value: 15.220630647952316

Whisper Large-v2 Marathi

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 mr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3108
  • Wer: 15.2206

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1931 3.04 200 0.2491 16.9270
0.1108 7.03 400 0.2379 15.2711
0.0548 11.02 600 0.2668 15.3120
0.0189 15.01 800 0.3108 15.2206
0.0078 18.05 1000 0.3499 15.5571

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2