metadata
language:
- mr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large-v2 Marathi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 mr
type: mozilla-foundation/common_voice_11_0
config: mr
split: test
args: mr
metrics:
- name: Wer
type: wer
value: 15.220630647952316
Whisper Large-v2 Marathi
This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 mr dataset. It achieves the following results on the evaluation set:
- Loss: 0.3108
- Wer: 15.2206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1931 | 3.04 | 200 | 0.2491 | 16.9270 |
0.1108 | 7.03 | 400 | 0.2379 | 15.2711 |
0.0548 | 11.02 | 600 | 0.2668 | 15.3120 |
0.0189 | 15.01 | 800 | 0.3108 | 15.2206 |
0.0078 | 18.05 | 1000 | 0.3499 | 15.5571 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2