|
--- |
|
tags: |
|
- image-classification |
|
library_name: coreml |
|
license: other |
|
license_name: apple-ascl |
|
license_link: LICENSE |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization |
|
|
|
Please observe [original license](https://github.com/apple/ml-fastvit/blob/8af5928238cab99c45f64fc3e4e7b1516b8224ba/LICENSE). |
|
|
|
## Model Details |
|
- **Model Type:** Image classification |
|
- **Model Stats:** |
|
- Params (M): 44.1 |
|
- GMACs: 7.8 |
|
- Activations (M): 40.4 |
|
- Image size: 256 x 256 |
|
- **Papers:** |
|
- FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization: https://arxiv.org/abs/2303.14189 |
|
- **Original:** https://github.com/apple/ml-fastvit |
|
- **Dataset:** ImageNet-1k |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{vasufastvit2023, |
|
author = {Pavan Kumar Anasosalu Vasu and James Gabriel and Jeff Zhu and Oncel Tuzel and Anurag Ranjan}, |
|
title = {FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization}, |
|
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, |
|
year = {2023} |
|
} |
|
``` |
|
|