marianMT_hin_eng_cs / README.md
ar5entum's picture
Update README.md
fe1a82d verified
|
raw
history blame
5.17 kB
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-mul-en
tags:
- generated_from_trainer
- code switching
- hinglish
- code mixing
metrics:
- bleu
model-index:
- name: marianMT_hin_eng_cs
results: []
language:
- hi
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marianMT_hin_eng_cs
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-mul-en](https://huggingface.co/Helsinki-NLP/opus-mt-mul-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1450
- Bleu: 77.8649
- Gen Len: 74.8945
## Model description
The model is specifically designed to translate Hindi text written in Devanagari script into a mixed format where Hindi words are retained in Devanagari while English words are converted to Roman script. This model effectively handles the complexities of code-switching, producing output that accurately reflects the intended language mixing.
Example:
| Hindi | Hindi + English CS |
|:-----------------------------------------:|:-----------------------------------------:|
|तो वो टोटली मेरे घर के प्लान पे डिपेंड करता है |to वो totally मेरे घर के plan पे depend करता है |
|मांग लो भाई बहुत नेसेसरी है |मांग लो भाई बहुत necessary है |
```
from transformers import MarianMTModel, MarianTokenizer
class HinEngCS:
def __init__(self, model_name='ar5entum/marianMT_hin_eng_cs'):
self.model_name = model_name
self.tokenizer = MarianTokenizer.from_pretrained(model_name)
self.model = MarianMTModel.from_pretrained(model_name).to('cuda')
def predict(self, input_text):
tokenized_text = self.tokenizer(input_text, return_tensors='pt').to('cuda')
translated = self.model.generate(**tokenized_text)
translated_text = self.tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
model = HinEngCS()
input_text = "आज मैं नानयांग टेक्नोलॉजिकल निवर्सिटी में अनेक समझौते होते हुए देखूंगा जो कि उच्च शिक्षा साइंस टेक्नोलॉजी और इनोवेशन में हमारे सहयोग को ओर बढ़ाएंगे।"
model.predict(input_text)
# आज मैं नानयांग technological innovation में अनेक समझौते होते हुए देखूंगा जो कि उच्च शिक्षा science technology और innovation में हमारे सहयोग को ओर बढ़ाएंगे
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 100
- total_eval_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss |
|:-------------:|:-----:|:-----:|:-------:|:-------:|:---------------:|
| 1.5823 | 1.0 | 1118 | 11.6257 | 77.1622 | 1.1778 |
| 0.921 | 2.0 | 2236 | 33.2917 | 76.1459 | 0.6357 |
| 0.6472 | 3.0 | 3354 | 47.3533 | 75.9194 | 0.4504 |
| 0.5246 | 4.0 | 4472 | 55.2169 | 75.6871 | 0.3579 |
| 0.4228 | 5.0 | 5590 | 60.8262 | 75.5777 | 0.3041 |
| 0.3745 | 6.0 | 6708 | 64.8987 | 75.4424 | 0.2693 |
| 0.3552 | 7.0 | 7826 | 67.7607 | 75.2438 | 0.2455 |
| 0.3324 | 8.0 | 8944 | 69.635 | 75.1036 | 0.2274 |
| 0.2912 | 9.0 | 10062 | 71.3086 | 75.0326 | 0.2117 |
| 0.2591 | 10.0 | 11180 | 72.392 | 74.9607 | 0.2001 |
| 0.2471 | 11.0 | 12298 | 73.4758 | 74.9251 | 0.1899 |
| 0.236 | 12.0 | 13416 | 74.4219 | 74.833 | 0.1822 |
| 0.2265 | 13.0 | 14534 | 75.1435 | 74.9069 | 0.1745 |
| 0.2152 | 14.0 | 15652 | 75.7614 | 74.7409 | 0.1695 |
| 0.2078 | 15.0 | 16770 | 76.2353 | 74.7092 | 0.1641 |
| 0.2048 | 16.0 | 17888 | 76.7381 | 74.7274 | 0.1593 |
| 0.1975 | 17.0 | 19006 | 76.9954 | 74.7217 | 0.1559 |
| 0.1943 | 18.0 | 20124 | 77.421 | 74.6641 | 0.1524 |
| 0.1987 | 19.0 | 21242 | 77.8231 | 74.6833 | 0.1495 |
| 0.1855 | 20.0 | 22360 | 78.0784 | 74.6804 | 0.1472 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1