crypto_sustainability_news_text_classifier-distilbert-base-uncased

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0678
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0723 1.0 8 1.0659 0.2167
1.0079 2.0 16 0.9776 0.75
0.908 3.0 24 0.8537 0.9333
0.7741 4.0 32 0.7082 0.9667
0.6449 5.0 40 0.5749 0.9667
0.5218 6.0 48 0.4551 0.9667
0.4026 7.0 56 0.3505 1.0
0.3144 8.0 64 0.2714 1.0
0.2424 9.0 72 0.2163 1.0
0.1939 10.0 80 0.1709 1.0
0.1559 11.0 88 0.1384 1.0
0.1247 12.0 96 0.1169 1.0
0.1073 13.0 104 0.0992 1.0
0.094 14.0 112 0.0890 1.0
0.0823 15.0 120 0.0813 1.0
0.0759 16.0 128 0.0756 1.0
0.0708 17.0 136 0.0720 1.0
0.0684 18.0 144 0.0697 1.0
0.0668 19.0 152 0.0683 1.0
0.0634 20.0 160 0.0678 1.0

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.0
Downloads last month
7
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arad1367/crypto_sustainability_news_text_classifier-distilbert-base-uncased

Finetuned
(7219)
this model