whisper-large-hy / README.md
arampacha's picture
Update README.md
0e2eddf
metadata
language:
  - hy
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
  - google/fleurs
metrics:
  - wer
model-index:
  - name: whisper-base-hy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hy-AM
          split: test
          args: hy-AM
        metrics:
          - name: Wer
            type: wer
            value: 22.36842105263158

whisper-large-hy

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2204
  • Wer: 22.3684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1394 5.87 400 0.1780 28.2895
0.0536 11.75 800 0.1739 24.6053
0.0247 17.64 1200 0.2098 22.9605
0.0154 23.52 1600 0.2035 22.1382
0.0103 29.41 2000 0.2204 22.3684

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2