|
--- |
|
license: apache-2.0 |
|
base_model: mlabonne/Marcoro14-7B-slerp |
|
datasets: |
|
- argilla/distilabel-intel-orca-dpo-pairs |
|
language: |
|
- en |
|
tags: |
|
- distilabel |
|
- dpo |
|
- rlaif |
|
- rlhf |
|
- merge |
|
- mergekit |
|
--- |
|
# ⚗️ distilabeled Marcoro14 7B Slerp |
|
|
|
|
|
<p align="center"> |
|
<a href="https://github.com/argilla-io/distilabel"> |
|
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> |
|
</a> |
|
</p> |
|
|
|
|
|
## Introduction |
|
|
|
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel). |
|
|
|
## Training details |
|
|
|
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality. |
|
|
|
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction): |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Instead of this: |
|
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train") |
|
|
|
# we did this |
|
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train") |
|
|
|
dataset = dataset.filter( |
|
lambda r: |
|
r["status"] != "tie" and |
|
r["chosen_score"] >= 8 and |
|
not r["in_gsm8k_train"] |
|
) |
|
``` |
|
|
|
## Benchmark results |
|
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`). |
|
|
|
For running the benchmark we used another awesome contribution from Maxime: [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), check it out! |
|
|
|
| Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |
|
|-------------------------|------:|------:|---------:|-------:|------:| |
|
|[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| **76.47**| **65.46**| **47.19**| **58.63**| |
|
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67| |
|
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 | |
|
|
|
### Training Hardware |
|
|
|
We used 1 x A100 80GB in runpod for less than 1 hour. |
|
|
|
## Acknowledgements |
|
|
|
We'd like to thank the amazing open community and in particular: |
|
|
|
* The Intel team for publishing a great open dataset and show how well it worked in the first place |
|
* Teknium and NousResearch for their awesome work and models. |
|
* Maxime for sharing such great resources. |
|
|