davidberenstein1957's picture
davidberenstein1957/phi2-lora-quantized-distilabel-intel-orca-dpo-pairs
2fb398c verified
|
raw
history blame
4.99 kB
metadata
license: mit
library_name: peft
tags:
  - trl
  - dpo
  - generated_from_trainer
base_model: microsoft/phi-2
model-index:
  - name: phi2-lora-quantized-distilabel-intel-orca-dpo-pairs
    results: []

phi2-lora-quantized-distilabel-intel-orca-dpo-pairs

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0972
  • Rewards/chosen: 0.2699
  • Rewards/rejected: -5.8246
  • Rewards/accuracies: 0.9623
  • Rewards/margins: 6.0944
  • Logps/rejected: -311.1872
  • Logps/chosen: -115.6127
  • Logits/rejected: 0.0766
  • Logits/chosen: 0.0242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6805 0.06 20 0.6540 0.0096 -0.0728 0.8367 0.0824 -253.6698 -118.2153 0.3760 0.3395
0.5821 0.12 40 0.4977 0.0383 -0.4385 0.9199 0.4768 -257.3268 -117.9285 0.3836 0.3356
0.4163 0.19 60 0.3225 0.0641 -1.1656 0.9257 1.2298 -264.5979 -117.6701 0.3836 0.3192
0.275 0.25 80 0.2245 0.0476 -2.1180 0.9316 2.1656 -274.1212 -117.8351 0.3399 0.2698
0.1808 0.31 100 0.1771 -0.0012 -3.2019 0.9366 3.2007 -284.9609 -118.3238 0.2615 0.1964
0.1405 0.37 120 0.1528 0.0185 -4.0396 0.9425 4.0581 -293.3371 -118.1262 0.1983 0.1407
0.1121 0.44 140 0.1389 0.0285 -4.6518 0.9471 4.6802 -299.4591 -118.0267 0.1493 0.0980
0.1544 0.5 160 0.1289 0.0745 -4.9025 0.9506 4.9771 -301.9670 -117.5659 0.1257 0.0785
0.1594 0.56 180 0.1204 0.1435 -4.8770 0.9561 5.0205 -301.7119 -116.8765 0.1168 0.0696
0.0988 0.62 200 0.1136 0.1830 -5.1569 0.9576 5.3400 -304.5108 -116.4809 0.1078 0.0579
0.1141 0.68 220 0.1080 0.2052 -5.4532 0.9580 5.6584 -307.4731 -116.2591 0.0962 0.0460
0.0943 0.75 240 0.1037 0.2326 -5.6061 0.9592 5.8387 -309.0026 -115.9850 0.0913 0.0393
0.1108 0.81 260 0.1008 0.2500 -5.7399 0.9607 5.9900 -310.3409 -115.8109 0.0827 0.0316
0.1088 0.87 280 0.0987 0.2677 -5.7068 0.9619 5.9745 -310.0096 -115.6346 0.0825 0.0301
0.0741 0.93 300 0.0975 0.2701 -5.7873 0.9623 6.0574 -310.8145 -115.6102 0.0788 0.0261
0.1059 1.0 320 0.0972 0.2699 -5.8246 0.9623 6.0944 -311.1872 -115.6127 0.0766 0.0242

Framework versions

  • PEFT 0.7.1
  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1