font-identifier / README.md
ariadnak's picture
Model save
b2a7802
metadata
license: apache-2.0
base_model: microsoft/resnet-18
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: font-identifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7810232220609579

font-identifier

This model is a fine-tuned version of microsoft/resnet-18 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8935
  • Accuracy: 0.7810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.2836 1.0 344 7.2178 0.0038
6.6696 2.0 689 6.4685 0.0408
5.85 3.0 1034 5.3897 0.1254
5.0457 4.0 1379 4.4771 0.2143
4.3784 5.0 1723 3.6429 0.3242
3.809 6.0 2068 3.1236 0.4031
3.4229 7.0 2413 2.6388 0.4672
2.8977 8.0 2758 2.3279 0.5102
2.78 9.0 3102 2.0974 0.5682
2.4452 10.0 3447 1.8605 0.6027
2.2195 11.0 3792 1.6783 0.6312
2.1097 12.0 4137 1.6049 0.6390
1.9025 13.0 4481 1.4255 0.6912
1.7973 14.0 4826 1.3253 0.7075
1.7647 15.0 5171 1.3030 0.7032
1.6772 16.0 5516 1.1988 0.7210
1.5523 17.0 5860 1.1040 0.7395
1.4821 18.0 6205 1.0786 0.7380
1.3764 19.0 6550 1.0603 0.7471
1.2913 20.0 6895 1.0169 0.7542
1.3479 21.0 7239 0.9999 0.7563
1.3133 22.0 7584 0.9928 0.7594
1.2241 23.0 7929 0.9342 0.7649
1.1651 24.0 8274 0.9283 0.7658
1.1605 25.0 8618 0.9176 0.7720
1.0283 26.0 8963 0.8970 0.7767
1.1211 27.0 9308 0.8983 0.7754
1.1563 28.0 9653 0.8729 0.7801
1.1399 29.0 9997 0.9021 0.7732
1.1715 29.93 10320 0.8935 0.7810

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0