arielcerdap's picture
End of training
e50fc5e verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - stillerman/libristutter-4.7k
metrics:
  - wer
model-index:
  - name: Large V3 Turbo Stutter - Ariel Cerda
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Libristutter 4.7k
          type: stillerman/libristutter-4.7k
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 24.23141086749285

Large V3 Turbo Stutter - Ariel Cerda

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Libristutter 4.7k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5114
  • Wer: 24.2314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0584 3.7453 1000 0.3100 20.0250
0.0117 7.4906 2000 0.3970 21.1392
0.002 11.2360 3000 0.4427 20.3825
0.0003 14.9813 4000 0.4927 23.8501
0.0002 18.7266 5000 0.5114 24.2314

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1