first model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +18 -18
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 259.51 +/- 21.91
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8312ce5320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8312ce53b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8312ce5440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8312ce54d0>", "_build": "<function ActorCriticPolicy._build at 0x7f8312ce5560>", "forward": "<function ActorCriticPolicy.forward at 0x7f8312ce55f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8312ce5680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8312ce5710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8312ce57a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8312ce5830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8312ce58c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8312d39390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652016921.887356, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3bR73D0XW6FQAQuoleNTZSO+e5iK4mOQAAgD8AAIA/AHCFuuQpoT86N7I73Y8lv3a6vb1I4t09AAAAAAAAAAAN6v89exSoN9LEgTqvKfg410VSPGMXprkAAIA/AACAP2ZupbtxBTE62zV0Ol+iNTxvHta7H94YvQAAgD8AAAAAjRPEPWIZiD/+VaU+/2gbv0gzwz2v+z0+AAAAAAAAAAAavrG9uBaxueB09Lg6J9g0jYM9O5wrETgAAAAAAACAP7Py1T0U8KS6TJxCOwCY2bOSKsE6gsdfugAAgD8AAIA/c5J+PtI8+jzxho86cUBgOb1giT42+9i5AACAPwAAgD+axf48bKzYu91iKjxfD9k7mXhXPV3rxbwAAIA/AACAP1pFpD32ZFy6ZtAHPB+xCTZhPYu7owALNQAAgD8AAIA/s9AePfYkALrVptS6aZkotkLzFDplv/k5AACAPwAAgD/zHpU+7oCMPwFGAD/J4CC/bNGQPj6dBT4AAAAAAAAAAICXdD171oS6PY3zO0QwTTx4Noq5qgc2vQAAgD8AAIA/AD+6vI8uM7orGPI6c9a7tZwmAzqcXAy6AACAPwAAgD/mBtk97Bnfuf4UULtm3K+1m7RGuUBKdToAAIA/AAAAAG1SPb6RYko+yG95Pv2Blb7VyHg9iNQlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx7fXMUCUhpRSlIwBbJRLqIwBdJRHQH8O2PLgXM11fZQoaAZoCWgPQwiughjo2lf9v5SGlFKUaBVLoGgWR0B/Es0BOpKjdX2UKGgGaAloD0MIUtFY+ztrY0CUhpRSlGgVTegDaBZHQH81XdKujh11fZQoaAZoCWgPQwjqswOuKw1hQJSGlFKUaBVN6ANoFkdAfzcytFKChHV9lChoBmgJaA9DCGeasP3kr2TAlIaUUpRoFU1iAmgWR0B/OUka/ATJdX2UKGgGaAloD0MIVp+rrVg1Z0CUhpRSlGgVTegDaBZHQH85OkP+XJJ1fZQoaAZoCWgPQwgvFLAdjFw7QJSGlFKUaBVLpGgWR0B/PVkGzKLbdX2UKGgGaAloD0MIJCao4VsDUUCUhpRSlGgVTegDaBZHQH/CH2M85jp1fZQoaAZoCWgPQwjNkCqK1zVsQJSGlFKUaBVNtQFoFkdAf8ZTefqX4XV9lChoBmgJaA9DCNSa5h2nHD5AlIaUUpRoFUuUaBZHQH/nFwHZ9NN1fZQoaAZoCWgPQwizsn3IWydfQJSGlFKUaBVN6ANoFkdAgBTNp/PPcHV9lChoBmgJaA9DCOEnDqDfdF1AlIaUUpRoFU3oA2gWR0CAFzKbKA8TdX2UKGgGaAloD0MIvASnPpAKWUCUhpRSlGgVTegDaBZHQIAaQcghbGF1fZQoaAZoCWgPQwhYjpCBPIc+QJSGlFKUaBVLh2gWR0CAKdbfP5YYdX2UKGgGaAloD0MIjV4NUJq4ZECUhpRSlGgVTegDaBZHQIAz2oNutOp1fZQoaAZoCWgPQwj9SXzuBBdEQJSGlFKUaBVN6ANoFkdAgD4sK1G9YnV9lChoBmgJaA9DCDXTvU5qBmJAlIaUUpRoFU3oA2gWR0CAPxG7z06HdX2UKGgGaAloD0MIa/EpAMbjLUCUhpRSlGgVS65oFkdAgEW/4yoGZHV9lChoBmgJaA9DCLPTD+oiRWRAlIaUUpRoFU3oA2gWR0CASJQpF1B/dX2UKGgGaAloD0MIfjmzXaGwWkCUhpRSlGgVTegDaBZHQIBL/gvUSZl1fZQoaAZoCWgPQwj2Yign2vhbQJSGlFKUaBVN6ANoFkdAgEzkJ8fFJnV9lChoBmgJaA9DCEK1wYnoAzTAlIaUUpRoFUucaBZHQIBT0DIRywR1fZQoaAZoCWgPQwisOqsF9rZhQJSGlFKUaBVN6ANoFkdAgGAtw71ZknV9lChoBmgJaA9DCEJcOXvnvGJAlIaUUpRoFU3oA2gWR0CAYRKyOaOQdX2UKGgGaAloD0MIH0q05PERWkCUhpRSlGgVTegDaBZHQIBiMBGQSzx1fZQoaAZoCWgPQwgCgc6kTVxkQJSGlFKUaBVN6ANoFkdAgGItJFspHHV9lChoBmgJaA9DCPvNxHQh0GJAlIaUUpRoFU3oA2gWR0CAZF7Kq4pddX2UKGgGaAloD0MI422l12Z/WkCUhpRSlGgVTegDaBZHQICo+qo60Y11fZQoaAZoCWgPQwiK52wBoUVCQJSGlFKUaBVLnWgWR0CAqXwl0HQhdX2UKGgGaAloD0MI91rQe2O0UECUhpRSlGgVTegDaBZHQIC5qCUX5311fZQoaAZoCWgPQwh9l1KXjGPiP5SGlFKUaBVLvGgWR0CAwaUiY9gXdX2UKGgGaAloD0MI76mc9pSBXUCUhpRSlGgVTegDaBZHQIDbL0HyEtd1fZQoaAZoCWgPQwjEswQZgSRkQJSGlFKUaBVN6ANoFkdAgN6BbnoxH3V9lChoBmgJaA9DCLuYZrrXYGNAlIaUUpRoFU3oA2gWR0CA+KMuvlltdX2UKGgGaAloD0MIbk4lA8DqYUCUhpRSlGgVTegDaBZHQIEEfwb2lEZ1fZQoaAZoCWgPQwhKDW0ANrw2wJSGlFKUaBVL92gWR0CBB51DjR2KdX2UKGgGaAloD0MIbQIMy5/jXECUhpRSlGgVTegDaBZHQIEMDUPQOWl1fZQoaAZoCWgPQwgMVpxqLX9eQJSGlFKUaBVN6ANoFkdAgQ8WXC0ngHV9lChoBmgJaA9DCB767laWtVxAlIaUUpRoFU3oA2gWR0CBErArxy4ndX2UKGgGaAloD0MI/tXjvtVAYkCUhpRSlGgVTegDaBZHQIETibvw3Hd1fZQoaAZoCWgPQwh4QURqWiBgQJSGlFKUaBVN6ANoFkdAgRsAz544ZXV9lChoBmgJaA9DCGkc6ndhdWFAlIaUUpRoFU3oA2gWR0CBJ5LW7OE/dX2UKGgGaAloD0MImfIhqJp5ZECUhpRSlGgVTegDaBZHQIEouB4D9wZ1fZQoaAZoCWgPQwh3oblOIzlgQJSGlFKUaBVN6ANoFkdAgSi5xJd0JXV9lChoBmgJaA9DCNrGn6hsRD1AlIaUUpRoFUvPaBZHQIEq0a6z3RJ1fZQoaAZoCWgPQwgZ6NoX0AhhQJSGlFKUaBVN6ANoFkdAgStOearmyXV9lChoBmgJaA9DCJSilXuBu11AlIaUUpRoFU3oA2gWR0CBcVP8hs68dX2UKGgGaAloD0MIVHO5wVC7MkCUhpRSlGgVS41oFkdAgXP/io86m3V9lChoBmgJaA9DCJGYoIZvHWNAlIaUUpRoFU3oA2gWR0CBgibzbvgFdX2UKGgGaAloD0MIGcizy7cPW0CUhpRSlGgVTegDaBZHQIGKdvIfbK11fZQoaAZoCWgPQwh7ZkmAGqFiQJSGlFKUaBVNfwNoFkdAgZN3L/0dzXV9lChoBmgJaA9DCGITmbnAaWFAlIaUUpRoFU3oA2gWR0CBv/aC+UQkdX2UKGgGaAloD0MIs0XSbnSiZECUhpRSlGgVTegDaBZHQIHLiO/+Kj11fZQoaAZoCWgPQwj0/dR46aBNQJSGlFKUaBVN6ANoFkdAgc6J4bCJoHV9lChoBmgJaA9DCD3S4LY2K2hAlIaUUpRoFU3oA2gWR0CB0ri8WbgCdX2UKGgGaAloD0MIggLv5NOKYECUhpRSlGgVTegDaBZHQIHY/u7YkE91fZQoaAZoCWgPQwjOHJJaKKtaQJSGlFKUaBVN6ANoFkdAgdnfpUxVQ3V9lChoBmgJaA9DCDvhJTj1fFdAlIaUUpRoFU3oA2gWR0CB4UP6sQumdX2UKGgGaAloD0MInaBNDp9MLUCUhpRSlGgVS7xoFkdAgeY4TTOPenV9lChoBmgJaA9DCLXC9L0GXGFAlIaUUpRoFU3oA2gWR0CB7Yprk8zRdX2UKGgGaAloD0MI9l/nps1vZECUhpRSlGgVTegDaBZHQIHukc81XNl1fZQoaAZoCWgPQwgIyQImcBFAQJSGlFKUaBVN6ANoFkdAge6LRjSXt3V9lChoBmgJaA9DCBB1H4DUz1ZAlIaUUpRoFU3oA2gWR0CB8ISlnAZbdX2UKGgGaAloD0MI3xrYKsG1X0CUhpRSlGgVTegDaBZHQII2UJjUd7x1fZQoaAZoCWgPQwgQsFbtmnNQQJSGlFKUaBVN6ANoFkdAgjjb2lEZznV9lChoBmgJaA9DCBdH5SbqAmBAlIaUUpRoFU3oA2gWR0CCRfReC04SdX2UKGgGaAloD0MI+tUcIBiNYUCUhpRSlGgVTegDaBZHQIJNsYQ8OkN1fZQoaAZoCWgPQwgniLoPwOxhQJSGlFKUaBVN6ANoFkdAglZYMWoFV3V9lChoBmgJaA9DCN/CuvHugGFAlIaUUpRoFU3oA2gWR0CCgO2WIGhVdX2UKGgGaAloD0MI7RFqhtSIYECUhpRSlGgVTegDaBZHQIKO1cbBGhF1fZQoaAZoCWgPQwjIYTB/BXRjQJSGlFKUaBVN6ANoFkdAgpLq7Ackt3V9lChoBmgJaA9DCHU5JSCmp2FAlIaUUpRoFU3oA2gWR0CCmZgrpaA4dX2UKGgGaAloD0MIObNdoY/7ZUCUhpRSlGgVTegDaBZHQIKaajk+5e91fZQoaAZoCWgPQwjl7nN8NGtgQJSGlFKUaBVN6ANoFkdAgqHsnRb8nHV9lChoBmgJaA9DCJxqLczCOWZAlIaUUpRoFU3oA2gWR0CCpr3qzJIUdX2UKGgGaAloD0MI8j/5u3dYWECUhpRSlGgVTegDaBZHQIKuCTQmeDp1fZQoaAZoCWgPQwholC79y2NhQJSGlFKUaBVN6ANoFkdAgq8atLcsUnV9lChoBmgJaA9DCLN9yFsuyWNAlIaUUpRoFU3oA2gWR0CCrxUvwmVrdX2UKGgGaAloD0MI9RH4w8+5ZUCUhpRSlGgVTegDaBZHQIKxDijtXxR1fZQoaAZoCWgPQwj/Bu3Vx91CQJSGlFKUaBVLimgWR0CCvxSc9W6tdX2UKGgGaAloD0MIw0ZZv5k3WECUhpRSlGgVTegDaBZHQIK/nSncclx1fZQoaAZoCWgPQwgna9RDNA9mQJSGlFKUaBVN6ANoFkdAgsIYZdfLLnV9lChoBmgJaA9DCLhaJy7HmF5AlIaUUpRoFU3oA2gWR0CDBek3S8aodX2UKGgGaAloD0MIRluVRPYrYkCUhpRSlGgVTegDaBZHQIMNKxX4j8l1fZQoaAZoCWgPQwjWcJF7ujRhQJSGlFKUaBVN6ANoFkdAgxW8oYvWYnV9lChoBmgJaA9DCLXC9L2GjkdAlIaUUpRoFUvraBZHQIMks1O0svt1fZQoaAZoCWgPQwic+GpH8UNgQJSGlFKUaBVN6ANoFkdAgz6AGSpzcXV9lChoBmgJaA9DCHpvDAFAPGNAlIaUUpRoFU3oA2gWR0CDS4ZBsyi3dX2UKGgGaAloD0MIlG3gDlR5Y0CUhpRSlGgVTegDaBZHQINPbtb9qDd1fZQoaAZoCWgPQwhuMT83tDxjQJSGlFKUaBVN6ANoFkdAg1Vmm+Cbt3V9lChoBmgJaA9DCBe6EoHqOl9AlIaUUpRoFU3oA2gWR0CDVisKb8WLdX2UKGgGaAloD0MIo7CLogeBY0CUhpRSlGgVTegDaBZHQINc633Hq/x1fZQoaAZoCWgPQwiFzmvsEtJdQJSGlFKUaBVN6ANoFkdAg2F+bVjI73V9lChoBmgJaA9DCBYYsrrVuWdAlIaUUpRoFU2TAmgWR0CDZ3VJ+UhWdX2UKGgGaAloD0MIXmQCfo2qWUCUhpRSlGgVTegDaBZHQINoRwfhddF1fZQoaAZoCWgPQwi3s688SEpkQJSGlFKUaBVN6ANoFkdAg2k+LFXJYHV9lChoBmgJaA9DCBQ+WwcH2l1AlIaUUpRoFU3oA2gWR0CDaxb5dnkDdX2UKGgGaAloD0MIio7k8p+dYECUhpRSlGgVTegDaBZHQIN5WDHwPRR1fZQoaAZoCWgPQwh8nGnCdidjQJSGlFKUaBVN6ANoFkdAg3nmvfTCtXV9lChoBmgJaA9DCLO1vkjox2BAlIaUUpRoFU3oA2gWR0CDfG3Kji4sdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eb51bec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eb51becb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eb51bed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eb51bedd0>", "_build": "<function ActorCriticPolicy._build at 0x7f3eb51bee60>", "forward": "<function ActorCriticPolicy.forward at 0x7f3eb51beef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eb51bef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3eb5146050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eb51460e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eb5146170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eb5146200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3eb51914b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652086754.5570514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvuzzYcbc/OrpBP+M1mz4HqKK8UoqtvQAAAAAAAAAAzfD4O7gp7D4Zk6Q9HwfkvlbsiD32FOU9AAAAAAAAAACzznu9UjpsPzwPgr0NreC+clPBvfhSdb0AAAAAAAAAAHPT9j3cn2M9FkTPvXPAyL35CZk817UdvQAAAAAAAAAAEKCBvrOjJj9uFu88hk3xvopsPr5l5Tc+AAAAAAAAAACa6dG6j41nvP3S7ryfH2c9GG28vfoPDTwAAIA/AACAP6bPqr32hDy6in07OC3DKDOWa926ai9etwAAgD8AAIA/5utgPaTQSbmF3FE8qXGgPDTzcrv+ekY8AACAPwAAgD8Aeq287KOnPHBhpD3g/Ue+WbX4vJ0Yjj0AAAAAAAAAANqF4j3tenA+qja7vVOtRL5bTCi9/SHVuwAAAAAAAAAAwG6lPfleHD5XQsO9z6REvgCWiDxDHZm9AAAAAAAAAAAzf4C7ln4dP8BZiz0MbcS+Yu61vEUiTz0AAAAAAAAAACXOi773P169vqELvPRwurrpp8A+ol6COwAAgD8AAIA/AF2YPLXduD9tr54+E9Y4PouULbxz0OK8AAAAAAAAAABNocQ9w4FWuvEoyzqi3+M0956PuwJt6rkAAIA/AACAPwAQhbscWK4/Jc+DvWzGx74mfk88dt5dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBlogiLbkCUhpRSlIwBbJRL/IwBdJRHQJRdtTo+wC91fZQoaAZoCWgPQwhLHeT1YJNxQJSGlFKUaBVNHAFoFkdAlF5ok7fYSXV9lChoBmgJaA9DCOXv3lHjBHBAlIaUUpRoFUv5aBZHQJRe/557gKp1fZQoaAZoCWgPQwg7/DVZIzZvQJSGlFKUaBVL9mgWR0CUXxzjFQ2udX2UKGgGaAloD0MIXjC45o7QcUCUhpRSlGgVS81oFkdAlF9msJY1YXV9lChoBmgJaA9DCDfGTniJkXBAlIaUUpRoFU0MAWgWR0CUYE6ltTDPdX2UKGgGaAloD0MIdsWM8DbQckCUhpRSlGgVTQABaBZHQJRgWIl+mWN1fZQoaAZoCWgPQwjToGgegD1xQJSGlFKUaBVNRgFoFkdAlGJzWwu/UXV9lChoBmgJaA9DCAA5YcIoZXBAlIaUUpRoFU0BAWgWR0CUZO6LwWnCdX2UKGgGaAloD0MIzTtO0dGzcUCUhpRSlGgVTRABaBZHQJRlVXHR1HR1fZQoaAZoCWgPQwhccXFU7t1xQJSGlFKUaBVNDgFoFkdAlGaKdlNDdHV9lChoBmgJaA9DCPdzCvKzb1hAlIaUUpRoFU3oA2gWR0CUZqthNM4+dX2UKGgGaAloD0MIxf8dUaGocUCUhpRSlGgVTQ4BaBZHQJRmrBeokzJ1fZQoaAZoCWgPQwha9iSw+XhwQJSGlFKUaBVNIgFoFkdAlGemoWHk93V9lChoBmgJaA9DCHE6yVbXY3NAlIaUUpRoFUvmaBZHQJRonADaGpN1fZQoaAZoCWgPQwj1nPS+8WVuQJSGlFKUaBVL92gWR0CUaOYIjW07dX2UKGgGaAloD0MIxEDXvoAhb0CUhpRSlGgVS/doFkdAlGkDOC5Et3V9lChoBmgJaA9DCKT8pNpnb3JAlIaUUpRoFU0kAWgWR0CUaVctGus+dX2UKGgGaAloD0MIpDmy8kt/b0CUhpRSlGgVS+BoFkdAlGloo7V8TnV9lChoBmgJaA9DCCTwh5//XHNAlIaUUpRoFU05AWgWR0CUabK0D2aldX2UKGgGaAloD0MI/3Vu2oybckCUhpRSlGgVTSMBaBZHQJRp4VnEl3R1fZQoaAZoCWgPQwgSTaCIRVpxQJSGlFKUaBVNDQFoFkdAlGrN3W4EwHV9lChoBmgJaA9DCLxYGCJnbnFAlIaUUpRoFUv4aBZHQJRr7qgRK6F1fZQoaAZoCWgPQwg4wMx3MKJwQJSGlFKUaBVL82gWR0CUbfhMJx//dX2UKGgGaAloD0MI9bnaiv3UcECUhpRSlGgVS+poFkdAlG35W3jMmnV9lChoBmgJaA9DCKrwZ3gz6nFAlIaUUpRoFUvfaBZHQJRuuSaEzwd1fZQoaAZoCWgPQwjLoUW2cxRyQJSGlFKUaBVNAAFoFkdAlG/dIXj2jHV9lChoBmgJaA9DCMQ/bOlR9HJAlIaUUpRoFU0IAWgWR0CUcEpLVWjodX2UKGgGaAloD0MI8Sprm6LLcUCUhpRSlGgVS9ZoFkdAlHEVmz0HyHV9lChoBmgJaA9DCC/84Hwqk3BAlIaUUpRoFU0DAWgWR0CUcSt8NQTFdX2UKGgGaAloD0MIPj4hOy9AcUCUhpRSlGgVS+poFkdAlHEsTFl05nV9lChoBmgJaA9DCED6Jk0DSHJAlIaUUpRoFUv8aBZHQJRyBxuKoAJ1fZQoaAZoCWgPQwj6gEBnEsFyQJSGlFKUaBVL+WgWR0CUcmsq8UVSdX2UKGgGaAloD0MIzv3V477Tb0CUhpRSlGgVTRkBaBZHQJRzNc8kleF1fZQoaAZoCWgPQwiK5gEs8ulyQJSGlFKUaBVNDgFoFkdAlHO8zAN5MXV9lChoBmgJaA9DCD7qr1dYSGhAlIaUUpRoFU2xA2gWR0CUc/v99+gEdX2UKGgGaAloD0MI0EVDxqP1ckCUhpRSlGgVTQMBaBZHQJR0TmdRR/F1fZQoaAZoCWgPQwi+Ed2zbgtyQJSGlFKUaBVNQgFoFkdAlHU1w1ivxHV9lChoBmgJaA9DCJM2VfdIjHBAlIaUUpRoFU0KAWgWR0CUdZ+DvmYCdX2UKGgGaAloD0MIcF8HzhmBcUCUhpRSlGgVS+JoFkdAlJU+eJ53T3V9lChoBmgJaA9DCEyo4PDC+XBAlIaUUpRoFUv+aBZHQJSVhH8TBZZ1fZQoaAZoCWgPQwgMAcCx53dwQJSGlFKUaBVL22gWR0CUlhvd/J/5dX2UKGgGaAloD0MIsJKP3YU0ckCUhpRSlGgVTRwBaBZHQJSWqHSF49p1fZQoaAZoCWgPQwhsXP+uzxtwQJSGlFKUaBVL6GgWR0CUl7crRSgodX2UKGgGaAloD0MI48Yt5mcJckCUhpRSlGgVTSwBaBZHQJSZku3+dbx1fZQoaAZoCWgPQwglz/V9eEtyQJSGlFKUaBVNGwFoFkdAlJmoiC8OC3V9lChoBmgJaA9DCArXo3D9RXNAlIaUUpRoFUv6aBZHQJSZ14lhPTJ1fZQoaAZoCWgPQwhlx0YgXp1vQJSGlFKUaBVNFAFoFkdAlJpi79Q40nV9lChoBmgJaA9DCDCCxkyiQW9AlIaUUpRoFUvuaBZHQJSauPMjeKt1fZQoaAZoCWgPQwg9u3zrw29yQJSGlFKUaBVL6WgWR0CUmsymALApdX2UKGgGaAloD0MI9fdSeJBmcUCUhpRSlGgVTTwBaBZHQJSa93KSxJN1fZQoaAZoCWgPQwhcVmEzwDRvQJSGlFKUaBVNCgFoFkdAlJsi0BwMpnV9lChoBmgJaA9DCJRrCmR2dnFAlIaUUpRoFUvQaBZHQJSbPR1HOKR1fZQoaAZoCWgPQwj6t8t+nf5wQJSGlFKUaBVL/WgWR0CUm7jy4FzNdX2UKGgGaAloD0MIxNDq5Ix0cECUhpRSlGgVS+poFkdAlJ18XvYvnXV9lChoBmgJaA9DCE4K8x6n8nBAlIaUUpRoFU0UAWgWR0CUncR9w3o+dX2UKGgGaAloD0MI3/yGiQb8bkCUhpRSlGgVS/loFkdAlJ9iIcinpHV9lChoBmgJaA9DCBO1NLcCDnNAlIaUUpRoFUvRaBZHQJSg4e4kNWl1fZQoaAZoCWgPQwiJ0t7gC4FtQJSGlFKUaBVNAwFoFkdAlKDtJz1bq3V9lChoBmgJaA9DCG4T7pW5zHJAlIaUUpRoFUvaaBZHQJShX2/SH/N1fZQoaAZoCWgPQwgzqaENwLpxQJSGlFKUaBVNbAFoFkdAlKNV4oqkM3V9lChoBmgJaA9DCFGFP8Ob1HFAlIaUUpRoFU0TAWgWR0CUo3P07KaHdX2UKGgGaAloD0MIkbbxJyrGbkCUhpRSlGgVS/VoFkdAlKO48U21lXV9lChoBmgJaA9DCOeMKO2NunJAlIaUUpRoFU0FAWgWR0CUpCIJ7b+MdX2UKGgGaAloD0MIwW9DjBe8cECUhpRSlGgVTQoBaBZHQJSkPtLL6k91fZQoaAZoCWgPQwigppattaVxQJSGlFKUaBVNDwFoFkdAlKThS9/SY3V9lChoBmgJaA9DCL3iqUfab3BAlIaUUpRoFU0rAWgWR0CUpRjebd8BdX2UKGgGaAloD0MI3A2iteJwckCUhpRSlGgVTRUBaBZHQJSlNIEr5Ip1fZQoaAZoCWgPQwhW1GAaBgRuQJSGlFKUaBVNBgFoFkdAlKVFKwpvxnV9lChoBmgJaA9DCK5mnfH9+nFAlIaUUpRoFU3CAWgWR0CUpcs8xKxtdX2UKGgGaAloD0MIkX2QZYHbcUCUhpRSlGgVS+BoFkdAlKYMEJSiunV9lChoBmgJaA9DCAkYXd4cmG9AlIaUUpRoFU0fAWgWR0CUp7s1sLv1dX2UKGgGaAloD0MIhjlBmxxZc0CUhpRSlGgVS+JoFkdAlKk6kM1CPnV9lChoBmgJaA9DCJNWfEPhxG5AlIaUUpRoFUv4aBZHQJSpm8pTdcl1fZQoaAZoCWgPQwh5ILJIE+xwQJSGlFKUaBVNJQFoFkdAlKnIvN/vv3V9lChoBmgJaA9DCD26ERbV83BAlIaUUpRoFU0VAWgWR0CUqpjps41hdX2UKGgGaAloD0MIexUZHVCKcUCUhpRSlGgVS91oFkdAlKrHxjJ+2HV9lChoBmgJaA9DCNbm/1VHfG9AlIaUUpRoFUv8aBZHQJSsP5ZbILh1fZQoaAZoCWgPQwj6uDZUzBBwQJSGlFKUaBVNHAFoFkdAlK0zeKsMiXV9lChoBmgJaA9DCMrAAS2daXJAlIaUUpRoFUvuaBZHQJStWp5u63B1fZQoaAZoCWgPQwiYv0LmyjNyQJSGlFKUaBVNFwFoFkdAlK3Lx/d69nV9lChoBmgJaA9DCGdD/pmBCHFAlIaUUpRoFU0GAWgWR0CUrg+0gKWtdX2UKGgGaAloD0MIWcLaGDtFcUCUhpRSlGgVTSwBaBZHQJSug4//vOR1fZQoaAZoCWgPQwjnjCjtDRxxQJSGlFKUaBVNEQFoFkdAlK6fAO8TSXV9lChoBmgJaA9DCN45lKEqjnJAlIaUUpRoFUv2aBZHQJSupsP8Q7N1fZQoaAZoCWgPQwhlqfV+o5ZvQJSGlFKUaBVNBAFoFkdAlK7WTHKfWnV9lChoBmgJaA9DCJUnEHbKWnNAlIaUUpRoFU1GAWgWR0CUr+L7oB7vdX2UKGgGaAloD0MIIPEr1nCPQUCUhpRSlGgVS8VoFkdAlLBsibDuSnV9lChoBmgJaA9DCDcAGxBhOnFAlIaUUpRoFU0AAWgWR0CUsJrDZUT+dX2UKGgGaAloD0MI9IjRcwtibkCUhpRSlGgVS/VoFkdAlLGh5kbxVnV9lChoBmgJaA9DCFsiF5zBdG9AlIaUUpRoFUvyaBZHQJSyCYfGMn91fZQoaAZoCWgPQwilLhnHyDxyQJSGlFKUaBVL5WgWR0CUsowpe/pMdX2UKGgGaAloD0MIL9tOW+OAcUCUhpRSlGgVS+xoFkdAlLKcgZCOWHV9lChoBmgJaA9DCGpnmNpSDXFAlIaUUpRoFUvgaBZHQJS0rLwF1Sx1fZQoaAZoCWgPQwjzH9JvX2NyQJSGlFKUaBVNCAFoFkdAlLUQn6VMVXV9lChoBmgJaA9DCPOS/8kfdnNAlIaUUpRoFUvmaBZHQJS1UVLzwtt1fZQoaAZoCWgPQwjEzD6PUUNyQJSGlFKUaBVL7mgWR0CUtkqqOtGNdX2UKGgGaAloD0MIRWRYxZv/bkCUhpRSlGgVTR8BaBZHQJS33q+rU9Z1fZQoaAZoCWgPQwjlfRzNkQJxQJSGlFKUaBVNEQFoFkdAlLfpbpu/DnV9lChoBmgJaA9DCNFY+ztb53BAlIaUUpRoFU0VAWgWR0CUuAeD3/PxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c2b80779ba73a2cda6b2caa4e6bdf50e3c38b6f26aae79c3ef7b36739baef57
|
3 |
+
size 143990
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eb51bec20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eb51becb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eb51bed40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eb51bedd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3eb51bee60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3eb51beef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eb51bef80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3eb5146050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eb51460e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eb5146170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eb5146200>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3eb51914b0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652086754.5570514,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvuzzYcbc/OrpBP+M1mz4HqKK8UoqtvQAAAAAAAAAAzfD4O7gp7D4Zk6Q9HwfkvlbsiD32FOU9AAAAAAAAAACzznu9UjpsPzwPgr0NreC+clPBvfhSdb0AAAAAAAAAAHPT9j3cn2M9FkTPvXPAyL35CZk817UdvQAAAAAAAAAAEKCBvrOjJj9uFu88hk3xvopsPr5l5Tc+AAAAAAAAAACa6dG6j41nvP3S7ryfH2c9GG28vfoPDTwAAIA/AACAP6bPqr32hDy6in07OC3DKDOWa926ai9etwAAgD8AAIA/5utgPaTQSbmF3FE8qXGgPDTzcrv+ekY8AACAPwAAgD8Aeq287KOnPHBhpD3g/Ue+WbX4vJ0Yjj0AAAAAAAAAANqF4j3tenA+qja7vVOtRL5bTCi9/SHVuwAAAAAAAAAAwG6lPfleHD5XQsO9z6REvgCWiDxDHZm9AAAAAAAAAAAzf4C7ln4dP8BZiz0MbcS+Yu61vEUiTz0AAAAAAAAAACXOi773P169vqELvPRwurrpp8A+ol6COwAAgD8AAIA/AF2YPLXduD9tr54+E9Y4PouULbxz0OK8AAAAAAAAAABNocQ9w4FWuvEoyzqi3+M0956PuwJt6rkAAIA/AACAPwAQhbscWK4/Jc+DvWzGx74mfk88dt5dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBlogiLbkCUhpRSlIwBbJRL/IwBdJRHQJRdtTo+wC91fZQoaAZoCWgPQwhLHeT1YJNxQJSGlFKUaBVNHAFoFkdAlF5ok7fYSXV9lChoBmgJaA9DCOXv3lHjBHBAlIaUUpRoFUv5aBZHQJRe/557gKp1fZQoaAZoCWgPQwg7/DVZIzZvQJSGlFKUaBVL9mgWR0CUXxzjFQ2udX2UKGgGaAloD0MIXjC45o7QcUCUhpRSlGgVS81oFkdAlF9msJY1YXV9lChoBmgJaA9DCDfGTniJkXBAlIaUUpRoFU0MAWgWR0CUYE6ltTDPdX2UKGgGaAloD0MIdsWM8DbQckCUhpRSlGgVTQABaBZHQJRgWIl+mWN1fZQoaAZoCWgPQwjToGgegD1xQJSGlFKUaBVNRgFoFkdAlGJzWwu/UXV9lChoBmgJaA9DCAA5YcIoZXBAlIaUUpRoFU0BAWgWR0CUZO6LwWnCdX2UKGgGaAloD0MIzTtO0dGzcUCUhpRSlGgVTRABaBZHQJRlVXHR1HR1fZQoaAZoCWgPQwhccXFU7t1xQJSGlFKUaBVNDgFoFkdAlGaKdlNDdHV9lChoBmgJaA9DCPdzCvKzb1hAlIaUUpRoFU3oA2gWR0CUZqthNM4+dX2UKGgGaAloD0MIxf8dUaGocUCUhpRSlGgVTQ4BaBZHQJRmrBeokzJ1fZQoaAZoCWgPQwha9iSw+XhwQJSGlFKUaBVNIgFoFkdAlGemoWHk93V9lChoBmgJaA9DCHE6yVbXY3NAlIaUUpRoFUvmaBZHQJRonADaGpN1fZQoaAZoCWgPQwj1nPS+8WVuQJSGlFKUaBVL92gWR0CUaOYIjW07dX2UKGgGaAloD0MIxEDXvoAhb0CUhpRSlGgVS/doFkdAlGkDOC5Et3V9lChoBmgJaA9DCKT8pNpnb3JAlIaUUpRoFU0kAWgWR0CUaVctGus+dX2UKGgGaAloD0MIpDmy8kt/b0CUhpRSlGgVS+BoFkdAlGloo7V8TnV9lChoBmgJaA9DCCTwh5//XHNAlIaUUpRoFU05AWgWR0CUabK0D2aldX2UKGgGaAloD0MI/3Vu2oybckCUhpRSlGgVTSMBaBZHQJRp4VnEl3R1fZQoaAZoCWgPQwgSTaCIRVpxQJSGlFKUaBVNDQFoFkdAlGrN3W4EwHV9lChoBmgJaA9DCLxYGCJnbnFAlIaUUpRoFUv4aBZHQJRr7qgRK6F1fZQoaAZoCWgPQwg4wMx3MKJwQJSGlFKUaBVL82gWR0CUbfhMJx//dX2UKGgGaAloD0MI9bnaiv3UcECUhpRSlGgVS+poFkdAlG35W3jMmnV9lChoBmgJaA9DCKrwZ3gz6nFAlIaUUpRoFUvfaBZHQJRuuSaEzwd1fZQoaAZoCWgPQwjLoUW2cxRyQJSGlFKUaBVNAAFoFkdAlG/dIXj2jHV9lChoBmgJaA9DCMQ/bOlR9HJAlIaUUpRoFU0IAWgWR0CUcEpLVWjodX2UKGgGaAloD0MI8Sprm6LLcUCUhpRSlGgVS9ZoFkdAlHEVmz0HyHV9lChoBmgJaA9DCC/84Hwqk3BAlIaUUpRoFU0DAWgWR0CUcSt8NQTFdX2UKGgGaAloD0MIPj4hOy9AcUCUhpRSlGgVS+poFkdAlHEsTFl05nV9lChoBmgJaA9DCED6Jk0DSHJAlIaUUpRoFUv8aBZHQJRyBxuKoAJ1fZQoaAZoCWgPQwj6gEBnEsFyQJSGlFKUaBVL+WgWR0CUcmsq8UVSdX2UKGgGaAloD0MIzv3V477Tb0CUhpRSlGgVTRkBaBZHQJRzNc8kleF1fZQoaAZoCWgPQwiK5gEs8ulyQJSGlFKUaBVNDgFoFkdAlHO8zAN5MXV9lChoBmgJaA9DCD7qr1dYSGhAlIaUUpRoFU2xA2gWR0CUc/v99+gEdX2UKGgGaAloD0MI0EVDxqP1ckCUhpRSlGgVTQMBaBZHQJR0TmdRR/F1fZQoaAZoCWgPQwi+Ed2zbgtyQJSGlFKUaBVNQgFoFkdAlHU1w1ivxHV9lChoBmgJaA9DCJM2VfdIjHBAlIaUUpRoFU0KAWgWR0CUdZ+DvmYCdX2UKGgGaAloD0MIcF8HzhmBcUCUhpRSlGgVS+JoFkdAlJU+eJ53T3V9lChoBmgJaA9DCEyo4PDC+XBAlIaUUpRoFUv+aBZHQJSVhH8TBZZ1fZQoaAZoCWgPQwgMAcCx53dwQJSGlFKUaBVL22gWR0CUlhvd/J/5dX2UKGgGaAloD0MIsJKP3YU0ckCUhpRSlGgVTRwBaBZHQJSWqHSF49p1fZQoaAZoCWgPQwhsXP+uzxtwQJSGlFKUaBVL6GgWR0CUl7crRSgodX2UKGgGaAloD0MI48Yt5mcJckCUhpRSlGgVTSwBaBZHQJSZku3+dbx1fZQoaAZoCWgPQwglz/V9eEtyQJSGlFKUaBVNGwFoFkdAlJmoiC8OC3V9lChoBmgJaA9DCArXo3D9RXNAlIaUUpRoFUv6aBZHQJSZ14lhPTJ1fZQoaAZoCWgPQwhlx0YgXp1vQJSGlFKUaBVNFAFoFkdAlJpi79Q40nV9lChoBmgJaA9DCDCCxkyiQW9AlIaUUpRoFUvuaBZHQJSauPMjeKt1fZQoaAZoCWgPQwg9u3zrw29yQJSGlFKUaBVL6WgWR0CUmsymALApdX2UKGgGaAloD0MI9fdSeJBmcUCUhpRSlGgVTTwBaBZHQJSa93KSxJN1fZQoaAZoCWgPQwhcVmEzwDRvQJSGlFKUaBVNCgFoFkdAlJsi0BwMpnV9lChoBmgJaA9DCJRrCmR2dnFAlIaUUpRoFUvQaBZHQJSbPR1HOKR1fZQoaAZoCWgPQwj6t8t+nf5wQJSGlFKUaBVL/WgWR0CUm7jy4FzNdX2UKGgGaAloD0MIxNDq5Ix0cECUhpRSlGgVS+poFkdAlJ18XvYvnXV9lChoBmgJaA9DCE4K8x6n8nBAlIaUUpRoFU0UAWgWR0CUncR9w3o+dX2UKGgGaAloD0MI3/yGiQb8bkCUhpRSlGgVS/loFkdAlJ9iIcinpHV9lChoBmgJaA9DCBO1NLcCDnNAlIaUUpRoFUvRaBZHQJSg4e4kNWl1fZQoaAZoCWgPQwiJ0t7gC4FtQJSGlFKUaBVNAwFoFkdAlKDtJz1bq3V9lChoBmgJaA9DCG4T7pW5zHJAlIaUUpRoFUvaaBZHQJShX2/SH/N1fZQoaAZoCWgPQwgzqaENwLpxQJSGlFKUaBVNbAFoFkdAlKNV4oqkM3V9lChoBmgJaA9DCFGFP8Ob1HFAlIaUUpRoFU0TAWgWR0CUo3P07KaHdX2UKGgGaAloD0MIkbbxJyrGbkCUhpRSlGgVS/VoFkdAlKO48U21lXV9lChoBmgJaA9DCOeMKO2NunJAlIaUUpRoFU0FAWgWR0CUpCIJ7b+MdX2UKGgGaAloD0MIwW9DjBe8cECUhpRSlGgVTQoBaBZHQJSkPtLL6k91fZQoaAZoCWgPQwigppattaVxQJSGlFKUaBVNDwFoFkdAlKThS9/SY3V9lChoBmgJaA9DCL3iqUfab3BAlIaUUpRoFU0rAWgWR0CUpRjebd8BdX2UKGgGaAloD0MI3A2iteJwckCUhpRSlGgVTRUBaBZHQJSlNIEr5Ip1fZQoaAZoCWgPQwhW1GAaBgRuQJSGlFKUaBVNBgFoFkdAlKVFKwpvxnV9lChoBmgJaA9DCK5mnfH9+nFAlIaUUpRoFU3CAWgWR0CUpcs8xKxtdX2UKGgGaAloD0MIkX2QZYHbcUCUhpRSlGgVS+BoFkdAlKYMEJSiunV9lChoBmgJaA9DCAkYXd4cmG9AlIaUUpRoFU0fAWgWR0CUp7s1sLv1dX2UKGgGaAloD0MIhjlBmxxZc0CUhpRSlGgVS+JoFkdAlKk6kM1CPnV9lChoBmgJaA9DCJNWfEPhxG5AlIaUUpRoFUv4aBZHQJSpm8pTdcl1fZQoaAZoCWgPQwh5ILJIE+xwQJSGlFKUaBVNJQFoFkdAlKnIvN/vv3V9lChoBmgJaA9DCD26ERbV83BAlIaUUpRoFU0VAWgWR0CUqpjps41hdX2UKGgGaAloD0MIexUZHVCKcUCUhpRSlGgVS91oFkdAlKrHxjJ+2HV9lChoBmgJaA9DCNbm/1VHfG9AlIaUUpRoFUv8aBZHQJSsP5ZbILh1fZQoaAZoCWgPQwj6uDZUzBBwQJSGlFKUaBVNHAFoFkdAlK0zeKsMiXV9lChoBmgJaA9DCMrAAS2daXJAlIaUUpRoFUvuaBZHQJStWp5u63B1fZQoaAZoCWgPQwiYv0LmyjNyQJSGlFKUaBVNFwFoFkdAlK3Lx/d69nV9lChoBmgJaA9DCGdD/pmBCHFAlIaUUpRoFU0GAWgWR0CUrg+0gKWtdX2UKGgGaAloD0MIWcLaGDtFcUCUhpRSlGgVTSwBaBZHQJSug4//vOR1fZQoaAZoCWgPQwjnjCjtDRxxQJSGlFKUaBVNEQFoFkdAlK6fAO8TSXV9lChoBmgJaA9DCN45lKEqjnJAlIaUUpRoFUv2aBZHQJSupsP8Q7N1fZQoaAZoCWgPQwhlqfV+o5ZvQJSGlFKUaBVNBAFoFkdAlK7WTHKfWnV9lChoBmgJaA9DCJUnEHbKWnNAlIaUUpRoFU1GAWgWR0CUr+L7oB7vdX2UKGgGaAloD0MIIPEr1nCPQUCUhpRSlGgVS8VoFkdAlLBsibDuSnV9lChoBmgJaA9DCDcAGxBhOnFAlIaUUpRoFU0AAWgWR0CUsJrDZUT+dX2UKGgGaAloD0MI9IjRcwtibkCUhpRSlGgVS/VoFkdAlLGh5kbxVnV9lChoBmgJaA9DCFsiF5zBdG9AlIaUUpRoFUvyaBZHQJSyCYfGMn91fZQoaAZoCWgPQwilLhnHyDxyQJSGlFKUaBVL5WgWR0CUsowpe/pMdX2UKGgGaAloD0MIL9tOW+OAcUCUhpRSlGgVS+xoFkdAlLKcgZCOWHV9lChoBmgJaA9DCGpnmNpSDXFAlIaUUpRoFUvgaBZHQJS0rLwF1Sx1fZQoaAZoCWgPQwjzH9JvX2NyQJSGlFKUaBVNCAFoFkdAlLUQn6VMVXV9lChoBmgJaA9DCPOS/8kfdnNAlIaUUpRoFUvmaBZHQJS1UVLzwtt1fZQoaAZoCWgPQwjEzD6PUUNyQJSGlFKUaBVL7mgWR0CUtkqqOtGNdX2UKGgGaAloD0MIRWRYxZv/bkCUhpRSlGgVTR8BaBZHQJS33q+rU9Z1fZQoaAZoCWgPQwjlfRzNkQJxQJSGlFKUaBVNEQFoFkdAlLfpbpu/DnV9lChoBmgJaA9DCNFY+ztb53BAlIaUUpRoFU0VAWgWR0CUuAeD3/PxdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffbaeccaf22d29b00e02c7ee8a36741a961d6b5d997428690326bc5687ae7e5b
|
3 |
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42a864e827c1f50f41626ff0dd518b452ee4d9a23c1af62ad9cd34152042e9cf
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458c0ffe8c1e67b51a1c22266194d0b4532cb64e106eacd09a08d01e9aeabe5e
|
3 |
+
size 193369
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 259.5070705167272, "std_reward": 21.90711934195792, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T09:24:20.732501"}
|