arimboux commited on
Commit
c377b45
1 Parent(s): 299bad0

first model

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 259.51 +/- 21.91
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 258.23 +/- 23.14
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eb51bec20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eb51becb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eb51bed40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eb51bedd0>", "_build": "<function ActorCriticPolicy._build at 0x7f3eb51bee60>", "forward": "<function ActorCriticPolicy.forward at 0x7f3eb51beef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eb51bef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3eb5146050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eb51460e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eb5146170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eb5146200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3eb51914b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652086754.5570514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvuzzYcbc/OrpBP+M1mz4HqKK8UoqtvQAAAAAAAAAAzfD4O7gp7D4Zk6Q9HwfkvlbsiD32FOU9AAAAAAAAAACzznu9UjpsPzwPgr0NreC+clPBvfhSdb0AAAAAAAAAAHPT9j3cn2M9FkTPvXPAyL35CZk817UdvQAAAAAAAAAAEKCBvrOjJj9uFu88hk3xvopsPr5l5Tc+AAAAAAAAAACa6dG6j41nvP3S7ryfH2c9GG28vfoPDTwAAIA/AACAP6bPqr32hDy6in07OC3DKDOWa926ai9etwAAgD8AAIA/5utgPaTQSbmF3FE8qXGgPDTzcrv+ekY8AACAPwAAgD8Aeq287KOnPHBhpD3g/Ue+WbX4vJ0Yjj0AAAAAAAAAANqF4j3tenA+qja7vVOtRL5bTCi9/SHVuwAAAAAAAAAAwG6lPfleHD5XQsO9z6REvgCWiDxDHZm9AAAAAAAAAAAzf4C7ln4dP8BZiz0MbcS+Yu61vEUiTz0AAAAAAAAAACXOi773P169vqELvPRwurrpp8A+ol6COwAAgD8AAIA/AF2YPLXduD9tr54+E9Y4PouULbxz0OK8AAAAAAAAAABNocQ9w4FWuvEoyzqi3+M0956PuwJt6rkAAIA/AACAPwAQhbscWK4/Jc+DvWzGx74mfk88dt5dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBlogiLbkCUhpRSlIwBbJRL/IwBdJRHQJRdtTo+wC91fZQoaAZoCWgPQwhLHeT1YJNxQJSGlFKUaBVNHAFoFkdAlF5ok7fYSXV9lChoBmgJaA9DCOXv3lHjBHBAlIaUUpRoFUv5aBZHQJRe/557gKp1fZQoaAZoCWgPQwg7/DVZIzZvQJSGlFKUaBVL9mgWR0CUXxzjFQ2udX2UKGgGaAloD0MIXjC45o7QcUCUhpRSlGgVS81oFkdAlF9msJY1YXV9lChoBmgJaA9DCDfGTniJkXBAlIaUUpRoFU0MAWgWR0CUYE6ltTDPdX2UKGgGaAloD0MIdsWM8DbQckCUhpRSlGgVTQABaBZHQJRgWIl+mWN1fZQoaAZoCWgPQwjToGgegD1xQJSGlFKUaBVNRgFoFkdAlGJzWwu/UXV9lChoBmgJaA9DCAA5YcIoZXBAlIaUUpRoFU0BAWgWR0CUZO6LwWnCdX2UKGgGaAloD0MIzTtO0dGzcUCUhpRSlGgVTRABaBZHQJRlVXHR1HR1fZQoaAZoCWgPQwhccXFU7t1xQJSGlFKUaBVNDgFoFkdAlGaKdlNDdHV9lChoBmgJaA9DCPdzCvKzb1hAlIaUUpRoFU3oA2gWR0CUZqthNM4+dX2UKGgGaAloD0MIxf8dUaGocUCUhpRSlGgVTQ4BaBZHQJRmrBeokzJ1fZQoaAZoCWgPQwha9iSw+XhwQJSGlFKUaBVNIgFoFkdAlGemoWHk93V9lChoBmgJaA9DCHE6yVbXY3NAlIaUUpRoFUvmaBZHQJRonADaGpN1fZQoaAZoCWgPQwj1nPS+8WVuQJSGlFKUaBVL92gWR0CUaOYIjW07dX2UKGgGaAloD0MIxEDXvoAhb0CUhpRSlGgVS/doFkdAlGkDOC5Et3V9lChoBmgJaA9DCKT8pNpnb3JAlIaUUpRoFU0kAWgWR0CUaVctGus+dX2UKGgGaAloD0MIpDmy8kt/b0CUhpRSlGgVS+BoFkdAlGloo7V8TnV9lChoBmgJaA9DCCTwh5//XHNAlIaUUpRoFU05AWgWR0CUabK0D2aldX2UKGgGaAloD0MI/3Vu2oybckCUhpRSlGgVTSMBaBZHQJRp4VnEl3R1fZQoaAZoCWgPQwgSTaCIRVpxQJSGlFKUaBVNDQFoFkdAlGrN3W4EwHV9lChoBmgJaA9DCLxYGCJnbnFAlIaUUpRoFUv4aBZHQJRr7qgRK6F1fZQoaAZoCWgPQwg4wMx3MKJwQJSGlFKUaBVL82gWR0CUbfhMJx//dX2UKGgGaAloD0MI9bnaiv3UcECUhpRSlGgVS+poFkdAlG35W3jMmnV9lChoBmgJaA9DCKrwZ3gz6nFAlIaUUpRoFUvfaBZHQJRuuSaEzwd1fZQoaAZoCWgPQwjLoUW2cxRyQJSGlFKUaBVNAAFoFkdAlG/dIXj2jHV9lChoBmgJaA9DCMQ/bOlR9HJAlIaUUpRoFU0IAWgWR0CUcEpLVWjodX2UKGgGaAloD0MI8Sprm6LLcUCUhpRSlGgVS9ZoFkdAlHEVmz0HyHV9lChoBmgJaA9DCC/84Hwqk3BAlIaUUpRoFU0DAWgWR0CUcSt8NQTFdX2UKGgGaAloD0MIPj4hOy9AcUCUhpRSlGgVS+poFkdAlHEsTFl05nV9lChoBmgJaA9DCED6Jk0DSHJAlIaUUpRoFUv8aBZHQJRyBxuKoAJ1fZQoaAZoCWgPQwj6gEBnEsFyQJSGlFKUaBVL+WgWR0CUcmsq8UVSdX2UKGgGaAloD0MIzv3V477Tb0CUhpRSlGgVTRkBaBZHQJRzNc8kleF1fZQoaAZoCWgPQwiK5gEs8ulyQJSGlFKUaBVNDgFoFkdAlHO8zAN5MXV9lChoBmgJaA9DCD7qr1dYSGhAlIaUUpRoFU2xA2gWR0CUc/v99+gEdX2UKGgGaAloD0MI0EVDxqP1ckCUhpRSlGgVTQMBaBZHQJR0TmdRR/F1fZQoaAZoCWgPQwi+Ed2zbgtyQJSGlFKUaBVNQgFoFkdAlHU1w1ivxHV9lChoBmgJaA9DCJM2VfdIjHBAlIaUUpRoFU0KAWgWR0CUdZ+DvmYCdX2UKGgGaAloD0MIcF8HzhmBcUCUhpRSlGgVS+JoFkdAlJU+eJ53T3V9lChoBmgJaA9DCEyo4PDC+XBAlIaUUpRoFUv+aBZHQJSVhH8TBZZ1fZQoaAZoCWgPQwgMAcCx53dwQJSGlFKUaBVL22gWR0CUlhvd/J/5dX2UKGgGaAloD0MIsJKP3YU0ckCUhpRSlGgVTRwBaBZHQJSWqHSF49p1fZQoaAZoCWgPQwhsXP+uzxtwQJSGlFKUaBVL6GgWR0CUl7crRSgodX2UKGgGaAloD0MI48Yt5mcJckCUhpRSlGgVTSwBaBZHQJSZku3+dbx1fZQoaAZoCWgPQwglz/V9eEtyQJSGlFKUaBVNGwFoFkdAlJmoiC8OC3V9lChoBmgJaA9DCArXo3D9RXNAlIaUUpRoFUv6aBZHQJSZ14lhPTJ1fZQoaAZoCWgPQwhlx0YgXp1vQJSGlFKUaBVNFAFoFkdAlJpi79Q40nV9lChoBmgJaA9DCDCCxkyiQW9AlIaUUpRoFUvuaBZHQJSauPMjeKt1fZQoaAZoCWgPQwg9u3zrw29yQJSGlFKUaBVL6WgWR0CUmsymALApdX2UKGgGaAloD0MI9fdSeJBmcUCUhpRSlGgVTTwBaBZHQJSa93KSxJN1fZQoaAZoCWgPQwhcVmEzwDRvQJSGlFKUaBVNCgFoFkdAlJsi0BwMpnV9lChoBmgJaA9DCJRrCmR2dnFAlIaUUpRoFUvQaBZHQJSbPR1HOKR1fZQoaAZoCWgPQwj6t8t+nf5wQJSGlFKUaBVL/WgWR0CUm7jy4FzNdX2UKGgGaAloD0MIxNDq5Ix0cECUhpRSlGgVS+poFkdAlJ18XvYvnXV9lChoBmgJaA9DCE4K8x6n8nBAlIaUUpRoFU0UAWgWR0CUncR9w3o+dX2UKGgGaAloD0MI3/yGiQb8bkCUhpRSlGgVS/loFkdAlJ9iIcinpHV9lChoBmgJaA9DCBO1NLcCDnNAlIaUUpRoFUvRaBZHQJSg4e4kNWl1fZQoaAZoCWgPQwiJ0t7gC4FtQJSGlFKUaBVNAwFoFkdAlKDtJz1bq3V9lChoBmgJaA9DCG4T7pW5zHJAlIaUUpRoFUvaaBZHQJShX2/SH/N1fZQoaAZoCWgPQwgzqaENwLpxQJSGlFKUaBVNbAFoFkdAlKNV4oqkM3V9lChoBmgJaA9DCFGFP8Ob1HFAlIaUUpRoFU0TAWgWR0CUo3P07KaHdX2UKGgGaAloD0MIkbbxJyrGbkCUhpRSlGgVS/VoFkdAlKO48U21lXV9lChoBmgJaA9DCOeMKO2NunJAlIaUUpRoFU0FAWgWR0CUpCIJ7b+MdX2UKGgGaAloD0MIwW9DjBe8cECUhpRSlGgVTQoBaBZHQJSkPtLL6k91fZQoaAZoCWgPQwigppattaVxQJSGlFKUaBVNDwFoFkdAlKThS9/SY3V9lChoBmgJaA9DCL3iqUfab3BAlIaUUpRoFU0rAWgWR0CUpRjebd8BdX2UKGgGaAloD0MI3A2iteJwckCUhpRSlGgVTRUBaBZHQJSlNIEr5Ip1fZQoaAZoCWgPQwhW1GAaBgRuQJSGlFKUaBVNBgFoFkdAlKVFKwpvxnV9lChoBmgJaA9DCK5mnfH9+nFAlIaUUpRoFU3CAWgWR0CUpcs8xKxtdX2UKGgGaAloD0MIkX2QZYHbcUCUhpRSlGgVS+BoFkdAlKYMEJSiunV9lChoBmgJaA9DCAkYXd4cmG9AlIaUUpRoFU0fAWgWR0CUp7s1sLv1dX2UKGgGaAloD0MIhjlBmxxZc0CUhpRSlGgVS+JoFkdAlKk6kM1CPnV9lChoBmgJaA9DCJNWfEPhxG5AlIaUUpRoFUv4aBZHQJSpm8pTdcl1fZQoaAZoCWgPQwh5ILJIE+xwQJSGlFKUaBVNJQFoFkdAlKnIvN/vv3V9lChoBmgJaA9DCD26ERbV83BAlIaUUpRoFU0VAWgWR0CUqpjps41hdX2UKGgGaAloD0MIexUZHVCKcUCUhpRSlGgVS91oFkdAlKrHxjJ+2HV9lChoBmgJaA9DCNbm/1VHfG9AlIaUUpRoFUv8aBZHQJSsP5ZbILh1fZQoaAZoCWgPQwj6uDZUzBBwQJSGlFKUaBVNHAFoFkdAlK0zeKsMiXV9lChoBmgJaA9DCMrAAS2daXJAlIaUUpRoFUvuaBZHQJStWp5u63B1fZQoaAZoCWgPQwiYv0LmyjNyQJSGlFKUaBVNFwFoFkdAlK3Lx/d69nV9lChoBmgJaA9DCGdD/pmBCHFAlIaUUpRoFU0GAWgWR0CUrg+0gKWtdX2UKGgGaAloD0MIWcLaGDtFcUCUhpRSlGgVTSwBaBZHQJSug4//vOR1fZQoaAZoCWgPQwjnjCjtDRxxQJSGlFKUaBVNEQFoFkdAlK6fAO8TSXV9lChoBmgJaA9DCN45lKEqjnJAlIaUUpRoFUv2aBZHQJSupsP8Q7N1fZQoaAZoCWgPQwhlqfV+o5ZvQJSGlFKUaBVNBAFoFkdAlK7WTHKfWnV9lChoBmgJaA9DCJUnEHbKWnNAlIaUUpRoFU1GAWgWR0CUr+L7oB7vdX2UKGgGaAloD0MIIPEr1nCPQUCUhpRSlGgVS8VoFkdAlLBsibDuSnV9lChoBmgJaA9DCDcAGxBhOnFAlIaUUpRoFU0AAWgWR0CUsJrDZUT+dX2UKGgGaAloD0MI9IjRcwtibkCUhpRSlGgVS/VoFkdAlLGh5kbxVnV9lChoBmgJaA9DCFsiF5zBdG9AlIaUUpRoFUvyaBZHQJSyCYfGMn91fZQoaAZoCWgPQwilLhnHyDxyQJSGlFKUaBVL5WgWR0CUsowpe/pMdX2UKGgGaAloD0MIL9tOW+OAcUCUhpRSlGgVS+xoFkdAlLKcgZCOWHV9lChoBmgJaA9DCGpnmNpSDXFAlIaUUpRoFUvgaBZHQJS0rLwF1Sx1fZQoaAZoCWgPQwjzH9JvX2NyQJSGlFKUaBVNCAFoFkdAlLUQn6VMVXV9lChoBmgJaA9DCPOS/8kfdnNAlIaUUpRoFUvmaBZHQJS1UVLzwtt1fZQoaAZoCWgPQwjEzD6PUUNyQJSGlFKUaBVL7mgWR0CUtkqqOtGNdX2UKGgGaAloD0MIRWRYxZv/bkCUhpRSlGgVTR8BaBZHQJS33q+rU9Z1fZQoaAZoCWgPQwjlfRzNkQJxQJSGlFKUaBVNEQFoFkdAlLfpbpu/DnV9lChoBmgJaA9DCNFY+ztb53BAlIaUUpRoFU0VAWgWR0CUuAeD3/PxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf9c6f8950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf9c6f89e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf9c6f8a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf9c6f8b00>", "_build": "<function ActorCriticPolicy._build at 0x7fcf9c6f8b90>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf9c6f8c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf9c6f8cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf9c6f8d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf9c6f8dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf9c6f8e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf9c6f8ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf9c742930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652098231.300375, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFB/ar4ECj4/bNMFP4C5mr4VHIq9EnPRPgAAAAAAAAAABnhpPsrEez6ixA++5uhpvr50hLosdJE9AAAAAAAAAABN5Ew+qVPOPsUmAb5Gm26+fJhnPQznBbsAAAAAAAAAAFqpwz0UoIi6Ot/TNADxei7OK+C5AOYLtAAAgD8AAAAAY3CEvognrT8qE/S+qQKXvtcOxr7QS0u+AAAAAAAAAAAm7eq979gGP7Ekuj7PBqa+kfllPZuukT0AAAAAAAAAAI1TGD5BNr68hMSzPK/H4Tyl/ie+8aOsPQAAgD8AAIA/mgVDvXbqsT7qe1s+o0LCvhwwfD32/rm8AAAAAAAAAADmTIw+apBfvV4yGj42dMu8puy/vloUkL0AAIA/AACAP8BKhb0/OZE/xtV0vkzwyb6Lp/O9TkbYvQAAAAAAAAAAZmZivV/mmT+KGLO9aViyvqmXFL4jqc69AAAAAAAAAABGE08+XtnmPjcLyTwsU6K+qizRukYM2rwAAAAAAAAAAA3VDT4u0bQ7/adRvQodv7t4l0U913iuvAAAgD8AAIA/mr0iPO8jCD+eEUs+aSNOvtqCiD17o5e8AAAAAAAAAACAdf09L88SPV7nDb7C5WK+6CB1vUKKxzwAAAAAAAAAAKbQ/r0vPLM/hi+uvhFDwL4R1Cy+trFTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3lUPmIfob0CUhpRSlIwBbJRNRwGMAXSUR0CUXG06o2n9dX2UKGgGaAloD0MIJ/kRv+JHbECUhpRSlGgVTS0BaBZHQJRc8yuZCv51fZQoaAZoCWgPQwgxe9l22p5tQJSGlFKUaBVNOwFoFkdAlF0XG8274HV9lChoBmgJaA9DCNIYraMqH3BAlIaUUpRoFU0uAWgWR0CUXa+mm+CcdX2UKGgGaAloD0MIJlRweEEbbkCUhpRSlGgVTXQBaBZHQJRd9bfP5YZ1fZQoaAZoCWgPQwgNG2X9pgJyQJSGlFKUaBVNHgFoFkdAlF5XKB/ZunV9lChoBmgJaA9DCCHmkqqtRHFAlIaUUpRoFU0nAWgWR0CUXsU+s5n2dX2UKGgGaAloD0MIpS4Zx8hncECUhpRSlGgVTSQBaBZHQJRe+LhrFfl1fZQoaAZoCWgPQwj8VYDvdnBwQJSGlFKUaBVNJAFoFkdAlGDdJWeYlnV9lChoBmgJaA9DCN19jo8Wgm1AlIaUUpRoFU0fAWgWR0CUYVfe1rqMdX2UKGgGaAloD0MIndfYJapeb0CUhpRSlGgVTQwBaBZHQJRh5+WnjyZ1fZQoaAZoCWgPQwht5/upMZtwQJSGlFKUaBVNQAFoFkdAlGUoMOPNmnV9lChoBmgJaA9DCHgKuVJPX3BAlIaUUpRoFU0eAWgWR0CUZ0UAT7EYdX2UKGgGaAloD0MIPBbbpGJBcECUhpRSlGgVTSYBaBZHQJRoIJF9a2Z1fZQoaAZoCWgPQwgSTDWzlp9tQJSGlFKUaBVNHAFoFkdAlGhXEhq0t3V9lChoBmgJaA9DCLrcYKjDpjtAlIaUUpRoFUuvaBZHQJRpvyd4FA51fZQoaAZoCWgPQwgLQQ5KmKNtQJSGlFKUaBVNLQFoFkdAlGpPdEb5unV9lChoBmgJaA9DCPEvgsZM9XBAlIaUUpRoFU0cAWgWR0CUauZML4N7dX2UKGgGaAloD0MI9Pxpo/pHckCUhpRSlGgVS+5oFkdAlGt7nHNorXV9lChoBmgJaA9DCElNu5hmVXFAlIaUUpRoFU1NAWgWR0CUbGLNfPX1dX2UKGgGaAloD0MI5KPFGUOOcECUhpRSlGgVTXUBaBZHQJRskipvP1N1fZQoaAZoCWgPQwjmkqrtJt5sQJSGlFKUaBVN7wFoFkdAlG15LytmtnV9lChoBmgJaA9DCPsEUIwscm1AlIaUUpRoFU19AWgWR0CUbbY6GQCCdX2UKGgGaAloD0MI9Z1flKAIckCUhpRSlGgVTRIBaBZHQJRtuTUy57R1fZQoaAZoCWgPQwgKMCx/vkFtQJSGlFKUaBVNHAFoFkdAlHREOEug6HV9lChoBmgJaA9DCJhQweGFwG9AlIaUUpRoFU1eAWgWR0CUdWYsNDtxdX2UKGgGaAloD0MIUn+9wgKfcUCUhpRSlGgVTSYBaBZHQJR1s4KhL5B1fZQoaAZoCWgPQwipM/eQ8CdyQJSGlFKUaBVNRgFoFkdAlHeTe40/GHV9lChoBmgJaA9DCOTYeobwjHJAlIaUUpRoFUv/aBZHQJR4IbuMMql1fZQoaAZoCWgPQwh1VgvssTJvQJSGlFKUaBVNKgFoFkdAlHgkjkdWAHV9lChoBmgJaA9DCDY656c4x3FAlIaUUpRoFU0/AWgWR0CUeJ3W4EwGdX2UKGgGaAloD0MI1VktsMeKYECUhpRSlGgVTegDaBZHQJR4zhxYJVt1fZQoaAZoCWgPQwgJ4GbxIqpyQJSGlFKUaBVNOwFoFkdAlHmBqCYkV3V9lChoBmgJaA9DCCF4fHvXX2xAlIaUUpRoFU0ZAWgWR0CUeY2icoYvdX2UKGgGaAloD0MIQ6m9iHYBcECUhpRSlGgVTREBaBZHQJR6TYsd1dR1fZQoaAZoCWgPQwh1V3bB4AFwQJSGlFKUaBVNLgFoFkdAlHt5swco6XV9lChoBmgJaA9DCFHAdjBibm5AlIaUUpRoFU04AWgWR0CUe6HYHxBmdX2UKGgGaAloD0MIqWxYU9lIckCUhpRSlGgVTSgBaBZHQJSCu6BiCrd1fZQoaAZoCWgPQwjr4ctEES9vQJSGlFKUaBVNJAFoFkdAlILXnZCfH3V9lChoBmgJaA9DCEBOmDDaPXBAlIaUUpRoFU02AmgWR0CUhXdcjZ+QdX2UKGgGaAloD0MIij+KOnOKbkCUhpRSlGgVTXEBaBZHQJSFoIhQm/p1fZQoaAZoCWgPQwi29dN/1oJxQJSGlFKUaBVNNwFoFkdAlIZwtnPE9HV9lChoBmgJaA9DCHF0le4uP2xAlIaUUpRoFU06AWgWR0CUhpsMy8BddX2UKGgGaAloD0MIXCGsxlLNcECUhpRSlGgVTS4BaBZHQJSGuDFqBVd1fZQoaAZoCWgPQwjpmV5irPJsQJSGlFKUaBVNNQFoFkdAlIbdsBQvYnV9lChoBmgJaA9DCF+1MuGXVFhAlIaUUpRoFU3oA2gWR0CUhwtqYZ2qdX2UKGgGaAloD0MIl3DoLd4DckCUhpRSlGgVTVQBaBZHQJSHSTyJ9Ap1fZQoaAZoCWgPQwhi26LMRt5xQJSGlFKUaBVNMwFoFkdAlIeKWw/xD3V9lChoBmgJaA9DCJ+RCI1gcXJAlIaUUpRoFU06AWgWR0CUh9BwMpgDdX2UKGgGaAloD0MINum2RK6abECUhpRSlGgVTUYBaBZHQJSeLfl6qsF1fZQoaAZoCWgPQwiYM9sVepZvQJSGlFKUaBVNOAFoFkdAlJ7TWbwz+HV9lChoBmgJaA9DCNasM74vL1FAlIaUUpRoFU3oA2gWR0CUn8/JvHcUdX2UKGgGaAloD0MIx0lh3mOEb0CUhpRSlGgVTVsBaBZHQJSf0ZflZHN1fZQoaAZoCWgPQwgcKPBOPlk2QJSGlFKUaBVL02gWR0CUoJJ2+wkgdX2UKGgGaAloD0MINWJmn4c1ckCUhpRSlGgVTQsBaBZHQJSkV2q1gIB1fZQoaAZoCWgPQwgmUwWjUkJyQJSGlFKUaBVNEAFoFkdAlKRwGbCrLnV9lChoBmgJaA9DCJ/pJcYyYnFAlIaUUpRoFU0ZAWgWR0CUpZc3l0YCdX2UKGgGaAloD0MI8wGBzqS+c0CUhpRSlGgVTRoBaBZHQJSm0Jswco91fZQoaAZoCWgPQwg9mBQfX21xQJSGlFKUaBVNMAFoFkdAlKbUCzTnaHV9lChoBmgJaA9DCD1H5LvUNXJAlIaUUpRoFU0dAWgWR0CUp0pfx+a0dX2UKGgGaAloD0MID2PS30tdcUCUhpRSlGgVTQABaBZHQJSnVjMFEAp1fZQoaAZoCWgPQwhHjnQGhrNwQJSGlFKUaBVNMAFoFkdAlKd3B+F10XV9lChoBmgJaA9DCE2+2eZG7W9AlIaUUpRoFU1IAWgWR0CUqACU5dWydX2UKGgGaAloD0MIrTB9r+EZc0CUhpRSlGgVTUsBaBZHQJSoRVAAyVR1fZQoaAZoCWgPQwh+qZ83FShsQJSGlFKUaBVNGwFoFkdAlKpaxgRbr3V9lChoBmgJaA9DCF7VWS0wS3BAlIaUUpRoFU0sAWgWR0CUqxK3uuzQdX2UKGgGaAloD0MI/RAbLJzzZECUhpRSlGgVTbYBaBZHQJSsTCgsbvR1fZQoaAZoCWgPQwgt6/6xEAlxQJSGlFKUaBVNOQFoFkdAlKzIX9BKMHV9lChoBmgJaA9DCKSJd4AnrHJAlIaUUpRoFUvyaBZHQJSuLamGdqd1fZQoaAZoCWgPQwgb9RCN7jZBQJSGlFKUaBVL1mgWR0CUr1fKZDzAdX2UKGgGaAloD0MIFY21v7OHRUCUhpRSlGgVS/RoFkdAlK+C17Y023V9lChoBmgJaA9DCINtxJPd9EJAlIaUUpRoFUvKaBZHQJSwCaScLBt1fZQoaAZoCWgPQwjzdoTTAqhvQJSGlFKUaBVNLwFoFkdAlLDJblijL3V9lChoBmgJaA9DCL1UbMxrmnFAlIaUUpRoFU0wAWgWR0CUs8j3225QdX2UKGgGaAloD0MIpdk8DoN7bUCUhpRSlGgVS/RoFkdAlLSdcSoOx3V9lChoBmgJaA9DCGaEtweh/HBAlIaUUpRoFU01AWgWR0CUtSZwn6VMdX2UKGgGaAloD0MIJ02Dovl/cUCUhpRSlGgVTU4BaBZHQJS1MoOQQtl1fZQoaAZoCWgPQwi4O2u33WBxQJSGlFKUaBVNXgFoFkdAlLVcVpKzzHV9lChoBmgJaA9DCAclzLQ9QHBAlIaUUpRoFU12AWgWR0CUtvK/mDDkdX2UKGgGaAloD0MIHqZ9c78YcECUhpRSlGgVS/toFkdAlLdcsDnvD3V9lChoBmgJaA9DCBXj/E0o63BAlIaUUpRoFU06AWgWR0CUuVQxN7BwdX2UKGgGaAloD0MIWdqpuVyYckCUhpRSlGgVTVsBaBZHQJS5ddhRZU11fZQoaAZoCWgPQwiQZiyaDpNxQJSGlFKUaBVNMgFoFkdAlLsSKR+z+nV9lChoBmgJaA9DCKN4lbWN1HFAlIaUUpRoFU0TAWgWR0CUux6T4cm0dX2UKGgGaAloD0MImZtvRHd0cECUhpRSlGgVTRkBaBZHQJS7NKODJ2d1fZQoaAZoCWgPQwj6t8t+3aJuQJSGlFKUaBVNLAFoFkdAlLybD/EOy3V9lChoBmgJaA9DCKoNTkQ/XXHAlIaUUpRoFUudaBZHQJS9Nx6v7nB1fZQoaAZoCWgPQwhQqRJl76dxQJSGlFKUaBVNLQFoFkdAlL1fDgqEvnV9lChoBmgJaA9DCNoB1xWzuGZAlIaUUpRoFU0eA2gWR0CUvkMvRJEqdX2UKGgGaAloD0MI5Lz/jxMJbkCUhpRSlGgVTSEBaBZHQJS/goRZlnR1fZQoaAZoCWgPQwg5YcJoVj5LQJSGlFKUaBVN6ANoFkdAlMBzc2zfJnV9lChoBmgJaA9DCGwm32xzfFBAlIaUUpRoFUvkaBZHQJTAfrIHTql1fZQoaAZoCWgPQwhiSbn7HARwQJSGlFKUaBVNHQFoFkdAlMCc4gieNHV9lChoBmgJaA9DCK6dKAkJjG9AlIaUUpRoFU04AWgWR0CUwRbKifxudX2UKGgGaAloD0MIks7AyMt7cECUhpRSlGgVTTcBaBZHQJTBcpqh11Z1fZQoaAZoCWgPQwjMXUvIR8ZwQJSGlFKUaBVNRgFoFkdAlMIZzLfUF3V9lChoBmgJaA9DCA3/6QbK1nFAlIaUUpRoFUv0aBZHQJTEJrFfiP11fZQoaAZoCWgPQwj7A+W2fQ8iQJSGlFKUaBVLxWgWR0CUxGzQeFL4dX2UKGgGaAloD0MIj95wHzlQb0CUhpRSlGgVS/loFkdAlMR3VLBbfXV9lChoBmgJaA9DCANckC3LkHFAlIaUUpRoFU0qAWgWR0CUxJtYjjaPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.17.3"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c2b80779ba73a2cda6b2caa4e6bdf50e3c38b6f26aae79c3ef7b36739baef57
3
- size 143990
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f46f9ef0b189f966dee6062a23c1fde1ddc83d3077fd54f38253017641e1b07f
3
+ size 143708
ppo-LunarLander-v2/data CHANGED
@@ -4,27 +4,27 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eb51bec20>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eb51becb0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eb51bed40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eb51bedd0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3eb51bee60>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3eb51beef0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eb51bef80>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3eb5146050>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eb51460e0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eb5146170>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eb5146200>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f3eb51914b0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
- "_shape": [
28
  8
29
  ],
30
  "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
@@ -35,9 +35,9 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
- "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652086754.5570514,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvuzzYcbc/OrpBP+M1mz4HqKK8UoqtvQAAAAAAAAAAzfD4O7gp7D4Zk6Q9HwfkvlbsiD32FOU9AAAAAAAAAACzznu9UjpsPzwPgr0NreC+clPBvfhSdb0AAAAAAAAAAHPT9j3cn2M9FkTPvXPAyL35CZk817UdvQAAAAAAAAAAEKCBvrOjJj9uFu88hk3xvopsPr5l5Tc+AAAAAAAAAACa6dG6j41nvP3S7ryfH2c9GG28vfoPDTwAAIA/AACAP6bPqr32hDy6in07OC3DKDOWa926ai9etwAAgD8AAIA/5utgPaTQSbmF3FE8qXGgPDTzcrv+ekY8AACAPwAAgD8Aeq287KOnPHBhpD3g/Ue+WbX4vJ0Yjj0AAAAAAAAAANqF4j3tenA+qja7vVOtRL5bTCi9/SHVuwAAAAAAAAAAwG6lPfleHD5XQsO9z6REvgCWiDxDHZm9AAAAAAAAAAAzf4C7ln4dP8BZiz0MbcS+Yu61vEUiTz0AAAAAAAAAACXOi773P169vqELvPRwurrpp8A+ol6COwAAgD8AAIA/AF2YPLXduD9tr54+E9Y4PouULbxz0OK8AAAAAAAAAABNocQ9w4FWuvEoyzqi3+M0956PuwJt6rkAAIA/AACAPwAQhbscWK4/Jc+DvWzGx74mfk88dt5dPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9vBlogiLbkCUhpRSlIwBbJRL/IwBdJRHQJRdtTo+wC91fZQoaAZoCWgPQwhLHeT1YJNxQJSGlFKUaBVNHAFoFkdAlF5ok7fYSXV9lChoBmgJaA9DCOXv3lHjBHBAlIaUUpRoFUv5aBZHQJRe/557gKp1fZQoaAZoCWgPQwg7/DVZIzZvQJSGlFKUaBVL9mgWR0CUXxzjFQ2udX2UKGgGaAloD0MIXjC45o7QcUCUhpRSlGgVS81oFkdAlF9msJY1YXV9lChoBmgJaA9DCDfGTniJkXBAlIaUUpRoFU0MAWgWR0CUYE6ltTDPdX2UKGgGaAloD0MIdsWM8DbQckCUhpRSlGgVTQABaBZHQJRgWIl+mWN1fZQoaAZoCWgPQwjToGgegD1xQJSGlFKUaBVNRgFoFkdAlGJzWwu/UXV9lChoBmgJaA9DCAA5YcIoZXBAlIaUUpRoFU0BAWgWR0CUZO6LwWnCdX2UKGgGaAloD0MIzTtO0dGzcUCUhpRSlGgVTRABaBZHQJRlVXHR1HR1fZQoaAZoCWgPQwhccXFU7t1xQJSGlFKUaBVNDgFoFkdAlGaKdlNDdHV9lChoBmgJaA9DCPdzCvKzb1hAlIaUUpRoFU3oA2gWR0CUZqthNM4+dX2UKGgGaAloD0MIxf8dUaGocUCUhpRSlGgVTQ4BaBZHQJRmrBeokzJ1fZQoaAZoCWgPQwha9iSw+XhwQJSGlFKUaBVNIgFoFkdAlGemoWHk93V9lChoBmgJaA9DCHE6yVbXY3NAlIaUUpRoFUvmaBZHQJRonADaGpN1fZQoaAZoCWgPQwj1nPS+8WVuQJSGlFKUaBVL92gWR0CUaOYIjW07dX2UKGgGaAloD0MIxEDXvoAhb0CUhpRSlGgVS/doFkdAlGkDOC5Et3V9lChoBmgJaA9DCKT8pNpnb3JAlIaUUpRoFU0kAWgWR0CUaVctGus+dX2UKGgGaAloD0MIpDmy8kt/b0CUhpRSlGgVS+BoFkdAlGloo7V8TnV9lChoBmgJaA9DCCTwh5//XHNAlIaUUpRoFU05AWgWR0CUabK0D2aldX2UKGgGaAloD0MI/3Vu2oybckCUhpRSlGgVTSMBaBZHQJRp4VnEl3R1fZQoaAZoCWgPQwgSTaCIRVpxQJSGlFKUaBVNDQFoFkdAlGrN3W4EwHV9lChoBmgJaA9DCLxYGCJnbnFAlIaUUpRoFUv4aBZHQJRr7qgRK6F1fZQoaAZoCWgPQwg4wMx3MKJwQJSGlFKUaBVL82gWR0CUbfhMJx//dX2UKGgGaAloD0MI9bnaiv3UcECUhpRSlGgVS+poFkdAlG35W3jMmnV9lChoBmgJaA9DCKrwZ3gz6nFAlIaUUpRoFUvfaBZHQJRuuSaEzwd1fZQoaAZoCWgPQwjLoUW2cxRyQJSGlFKUaBVNAAFoFkdAlG/dIXj2jHV9lChoBmgJaA9DCMQ/bOlR9HJAlIaUUpRoFU0IAWgWR0CUcEpLVWjodX2UKGgGaAloD0MI8Sprm6LLcUCUhpRSlGgVS9ZoFkdAlHEVmz0HyHV9lChoBmgJaA9DCC/84Hwqk3BAlIaUUpRoFU0DAWgWR0CUcSt8NQTFdX2UKGgGaAloD0MIPj4hOy9AcUCUhpRSlGgVS+poFkdAlHEsTFl05nV9lChoBmgJaA9DCED6Jk0DSHJAlIaUUpRoFUv8aBZHQJRyBxuKoAJ1fZQoaAZoCWgPQwj6gEBnEsFyQJSGlFKUaBVL+WgWR0CUcmsq8UVSdX2UKGgGaAloD0MIzv3V477Tb0CUhpRSlGgVTRkBaBZHQJRzNc8kleF1fZQoaAZoCWgPQwiK5gEs8ulyQJSGlFKUaBVNDgFoFkdAlHO8zAN5MXV9lChoBmgJaA9DCD7qr1dYSGhAlIaUUpRoFU2xA2gWR0CUc/v99+gEdX2UKGgGaAloD0MI0EVDxqP1ckCUhpRSlGgVTQMBaBZHQJR0TmdRR/F1fZQoaAZoCWgPQwi+Ed2zbgtyQJSGlFKUaBVNQgFoFkdAlHU1w1ivxHV9lChoBmgJaA9DCJM2VfdIjHBAlIaUUpRoFU0KAWgWR0CUdZ+DvmYCdX2UKGgGaAloD0MIcF8HzhmBcUCUhpRSlGgVS+JoFkdAlJU+eJ53T3V9lChoBmgJaA9DCEyo4PDC+XBAlIaUUpRoFUv+aBZHQJSVhH8TBZZ1fZQoaAZoCWgPQwgMAcCx53dwQJSGlFKUaBVL22gWR0CUlhvd/J/5dX2UKGgGaAloD0MIsJKP3YU0ckCUhpRSlGgVTRwBaBZHQJSWqHSF49p1fZQoaAZoCWgPQwhsXP+uzxtwQJSGlFKUaBVL6GgWR0CUl7crRSgodX2UKGgGaAloD0MI48Yt5mcJckCUhpRSlGgVTSwBaBZHQJSZku3+dbx1fZQoaAZoCWgPQwglz/V9eEtyQJSGlFKUaBVNGwFoFkdAlJmoiC8OC3V9lChoBmgJaA9DCArXo3D9RXNAlIaUUpRoFUv6aBZHQJSZ14lhPTJ1fZQoaAZoCWgPQwhlx0YgXp1vQJSGlFKUaBVNFAFoFkdAlJpi79Q40nV9lChoBmgJaA9DCDCCxkyiQW9AlIaUUpRoFUvuaBZHQJSauPMjeKt1fZQoaAZoCWgPQwg9u3zrw29yQJSGlFKUaBVL6WgWR0CUmsymALApdX2UKGgGaAloD0MI9fdSeJBmcUCUhpRSlGgVTTwBaBZHQJSa93KSxJN1fZQoaAZoCWgPQwhcVmEzwDRvQJSGlFKUaBVNCgFoFkdAlJsi0BwMpnV9lChoBmgJaA9DCJRrCmR2dnFAlIaUUpRoFUvQaBZHQJSbPR1HOKR1fZQoaAZoCWgPQwj6t8t+nf5wQJSGlFKUaBVL/WgWR0CUm7jy4FzNdX2UKGgGaAloD0MIxNDq5Ix0cECUhpRSlGgVS+poFkdAlJ18XvYvnXV9lChoBmgJaA9DCE4K8x6n8nBAlIaUUpRoFU0UAWgWR0CUncR9w3o+dX2UKGgGaAloD0MI3/yGiQb8bkCUhpRSlGgVS/loFkdAlJ9iIcinpHV9lChoBmgJaA9DCBO1NLcCDnNAlIaUUpRoFUvRaBZHQJSg4e4kNWl1fZQoaAZoCWgPQwiJ0t7gC4FtQJSGlFKUaBVNAwFoFkdAlKDtJz1bq3V9lChoBmgJaA9DCG4T7pW5zHJAlIaUUpRoFUvaaBZHQJShX2/SH/N1fZQoaAZoCWgPQwgzqaENwLpxQJSGlFKUaBVNbAFoFkdAlKNV4oqkM3V9lChoBmgJaA9DCFGFP8Ob1HFAlIaUUpRoFU0TAWgWR0CUo3P07KaHdX2UKGgGaAloD0MIkbbxJyrGbkCUhpRSlGgVS/VoFkdAlKO48U21lXV9lChoBmgJaA9DCOeMKO2NunJAlIaUUpRoFU0FAWgWR0CUpCIJ7b+MdX2UKGgGaAloD0MIwW9DjBe8cECUhpRSlGgVTQoBaBZHQJSkPtLL6k91fZQoaAZoCWgPQwigppattaVxQJSGlFKUaBVNDwFoFkdAlKThS9/SY3V9lChoBmgJaA9DCL3iqUfab3BAlIaUUpRoFU0rAWgWR0CUpRjebd8BdX2UKGgGaAloD0MI3A2iteJwckCUhpRSlGgVTRUBaBZHQJSlNIEr5Ip1fZQoaAZoCWgPQwhW1GAaBgRuQJSGlFKUaBVNBgFoFkdAlKVFKwpvxnV9lChoBmgJaA9DCK5mnfH9+nFAlIaUUpRoFU3CAWgWR0CUpcs8xKxtdX2UKGgGaAloD0MIkX2QZYHbcUCUhpRSlGgVS+BoFkdAlKYMEJSiunV9lChoBmgJaA9DCAkYXd4cmG9AlIaUUpRoFU0fAWgWR0CUp7s1sLv1dX2UKGgGaAloD0MIhjlBmxxZc0CUhpRSlGgVS+JoFkdAlKk6kM1CPnV9lChoBmgJaA9DCJNWfEPhxG5AlIaUUpRoFUv4aBZHQJSpm8pTdcl1fZQoaAZoCWgPQwh5ILJIE+xwQJSGlFKUaBVNJQFoFkdAlKnIvN/vv3V9lChoBmgJaA9DCD26ERbV83BAlIaUUpRoFU0VAWgWR0CUqpjps41hdX2UKGgGaAloD0MIexUZHVCKcUCUhpRSlGgVS91oFkdAlKrHxjJ+2HV9lChoBmgJaA9DCNbm/1VHfG9AlIaUUpRoFUv8aBZHQJSsP5ZbILh1fZQoaAZoCWgPQwj6uDZUzBBwQJSGlFKUaBVNHAFoFkdAlK0zeKsMiXV9lChoBmgJaA9DCMrAAS2daXJAlIaUUpRoFUvuaBZHQJStWp5u63B1fZQoaAZoCWgPQwiYv0LmyjNyQJSGlFKUaBVNFwFoFkdAlK3Lx/d69nV9lChoBmgJaA9DCGdD/pmBCHFAlIaUUpRoFU0GAWgWR0CUrg+0gKWtdX2UKGgGaAloD0MIWcLaGDtFcUCUhpRSlGgVTSwBaBZHQJSug4//vOR1fZQoaAZoCWgPQwjnjCjtDRxxQJSGlFKUaBVNEQFoFkdAlK6fAO8TSXV9lChoBmgJaA9DCN45lKEqjnJAlIaUUpRoFUv2aBZHQJSupsP8Q7N1fZQoaAZoCWgPQwhlqfV+o5ZvQJSGlFKUaBVNBAFoFkdAlK7WTHKfWnV9lChoBmgJaA9DCJUnEHbKWnNAlIaUUpRoFU1GAWgWR0CUr+L7oB7vdX2UKGgGaAloD0MIIPEr1nCPQUCUhpRSlGgVS8VoFkdAlLBsibDuSnV9lChoBmgJaA9DCDcAGxBhOnFAlIaUUpRoFU0AAWgWR0CUsJrDZUT+dX2UKGgGaAloD0MI9IjRcwtibkCUhpRSlGgVS/VoFkdAlLGh5kbxVnV9lChoBmgJaA9DCFsiF5zBdG9AlIaUUpRoFUvyaBZHQJSyCYfGMn91fZQoaAZoCWgPQwilLhnHyDxyQJSGlFKUaBVL5WgWR0CUsowpe/pMdX2UKGgGaAloD0MIL9tOW+OAcUCUhpRSlGgVS+xoFkdAlLKcgZCOWHV9lChoBmgJaA9DCGpnmNpSDXFAlIaUUpRoFUvgaBZHQJS0rLwF1Sx1fZQoaAZoCWgPQwjzH9JvX2NyQJSGlFKUaBVNCAFoFkdAlLUQn6VMVXV9lChoBmgJaA9DCPOS/8kfdnNAlIaUUpRoFUvmaBZHQJS1UVLzwtt1fZQoaAZoCWgPQwjEzD6PUUNyQJSGlFKUaBVL7mgWR0CUtkqqOtGNdX2UKGgGaAloD0MIRWRYxZv/bkCUhpRSlGgVTR8BaBZHQJS33q+rU9Z1fZQoaAZoCWgPQwjlfRzNkQJxQJSGlFKUaBVNEQFoFkdAlLfpbpu/DnV9lChoBmgJaA9DCNFY+ztb53BAlIaUUpRoFU0VAWgWR0CUuAeD3/PxdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -83,7 +83,7 @@
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf9c6f8950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf9c6f89e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf9c6f8a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf9c6f8b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcf9c6f8b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcf9c6f8c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf9c6f8cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcf9c6f8d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf9c6f8dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf9c6f8e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf9c6f8ef0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcf9c742930>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
  "dtype": "float32",
27
+ "shape": [
28
  8
29
  ],
30
  "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
  "n": 4,
40
+ "shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652098231.300375,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFB/ar4ECj4/bNMFP4C5mr4VHIq9EnPRPgAAAAAAAAAABnhpPsrEez6ixA++5uhpvr50hLosdJE9AAAAAAAAAABN5Ew+qVPOPsUmAb5Gm26+fJhnPQznBbsAAAAAAAAAAFqpwz0UoIi6Ot/TNADxei7OK+C5AOYLtAAAgD8AAAAAY3CEvognrT8qE/S+qQKXvtcOxr7QS0u+AAAAAAAAAAAm7eq979gGP7Ekuj7PBqa+kfllPZuukT0AAAAAAAAAAI1TGD5BNr68hMSzPK/H4Tyl/ie+8aOsPQAAgD8AAIA/mgVDvXbqsT7qe1s+o0LCvhwwfD32/rm8AAAAAAAAAADmTIw+apBfvV4yGj42dMu8puy/vloUkL0AAIA/AACAP8BKhb0/OZE/xtV0vkzwyb6Lp/O9TkbYvQAAAAAAAAAAZmZivV/mmT+KGLO9aViyvqmXFL4jqc69AAAAAAAAAABGE08+XtnmPjcLyTwsU6K+qizRukYM2rwAAAAAAAAAAA3VDT4u0bQ7/adRvQodv7t4l0U913iuvAAAgD8AAIA/mr0iPO8jCD+eEUs+aSNOvtqCiD17o5e8AAAAAAAAAACAdf09L88SPV7nDb7C5WK+6CB1vUKKxzwAAAAAAAAAAKbQ/r0vPLM/hi+uvhFDwL4R1Cy+trFTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3lUPmIfob0CUhpRSlIwBbJRNRwGMAXSUR0CUXG06o2n9dX2UKGgGaAloD0MIJ/kRv+JHbECUhpRSlGgVTS0BaBZHQJRc8yuZCv51fZQoaAZoCWgPQwgxe9l22p5tQJSGlFKUaBVNOwFoFkdAlF0XG8274HV9lChoBmgJaA9DCNIYraMqH3BAlIaUUpRoFU0uAWgWR0CUXa+mm+CcdX2UKGgGaAloD0MIJlRweEEbbkCUhpRSlGgVTXQBaBZHQJRd9bfP5YZ1fZQoaAZoCWgPQwgNG2X9pgJyQJSGlFKUaBVNHgFoFkdAlF5XKB/ZunV9lChoBmgJaA9DCCHmkqqtRHFAlIaUUpRoFU0nAWgWR0CUXsU+s5n2dX2UKGgGaAloD0MIpS4Zx8hncECUhpRSlGgVTSQBaBZHQJRe+LhrFfl1fZQoaAZoCWgPQwj8VYDvdnBwQJSGlFKUaBVNJAFoFkdAlGDdJWeYlnV9lChoBmgJaA9DCN19jo8Wgm1AlIaUUpRoFU0fAWgWR0CUYVfe1rqMdX2UKGgGaAloD0MIndfYJapeb0CUhpRSlGgVTQwBaBZHQJRh5+WnjyZ1fZQoaAZoCWgPQwht5/upMZtwQJSGlFKUaBVNQAFoFkdAlGUoMOPNmnV9lChoBmgJaA9DCHgKuVJPX3BAlIaUUpRoFU0eAWgWR0CUZ0UAT7EYdX2UKGgGaAloD0MIPBbbpGJBcECUhpRSlGgVTSYBaBZHQJRoIJF9a2Z1fZQoaAZoCWgPQwgSTDWzlp9tQJSGlFKUaBVNHAFoFkdAlGhXEhq0t3V9lChoBmgJaA9DCLrcYKjDpjtAlIaUUpRoFUuvaBZHQJRpvyd4FA51fZQoaAZoCWgPQwgLQQ5KmKNtQJSGlFKUaBVNLQFoFkdAlGpPdEb5unV9lChoBmgJaA9DCPEvgsZM9XBAlIaUUpRoFU0cAWgWR0CUauZML4N7dX2UKGgGaAloD0MI9Pxpo/pHckCUhpRSlGgVS+5oFkdAlGt7nHNorXV9lChoBmgJaA9DCElNu5hmVXFAlIaUUpRoFU1NAWgWR0CUbGLNfPX1dX2UKGgGaAloD0MI5KPFGUOOcECUhpRSlGgVTXUBaBZHQJRskipvP1N1fZQoaAZoCWgPQwjmkqrtJt5sQJSGlFKUaBVN7wFoFkdAlG15LytmtnV9lChoBmgJaA9DCPsEUIwscm1AlIaUUpRoFU19AWgWR0CUbbY6GQCCdX2UKGgGaAloD0MI9Z1flKAIckCUhpRSlGgVTRIBaBZHQJRtuTUy57R1fZQoaAZoCWgPQwgKMCx/vkFtQJSGlFKUaBVNHAFoFkdAlHREOEug6HV9lChoBmgJaA9DCJhQweGFwG9AlIaUUpRoFU1eAWgWR0CUdWYsNDtxdX2UKGgGaAloD0MIUn+9wgKfcUCUhpRSlGgVTSYBaBZHQJR1s4KhL5B1fZQoaAZoCWgPQwipM/eQ8CdyQJSGlFKUaBVNRgFoFkdAlHeTe40/GHV9lChoBmgJaA9DCOTYeobwjHJAlIaUUpRoFUv/aBZHQJR4IbuMMql1fZQoaAZoCWgPQwh1VgvssTJvQJSGlFKUaBVNKgFoFkdAlHgkjkdWAHV9lChoBmgJaA9DCDY656c4x3FAlIaUUpRoFU0/AWgWR0CUeJ3W4EwGdX2UKGgGaAloD0MI1VktsMeKYECUhpRSlGgVTegDaBZHQJR4zhxYJVt1fZQoaAZoCWgPQwgJ4GbxIqpyQJSGlFKUaBVNOwFoFkdAlHmBqCYkV3V9lChoBmgJaA9DCCF4fHvXX2xAlIaUUpRoFU0ZAWgWR0CUeY2icoYvdX2UKGgGaAloD0MIQ6m9iHYBcECUhpRSlGgVTREBaBZHQJR6TYsd1dR1fZQoaAZoCWgPQwh1V3bB4AFwQJSGlFKUaBVNLgFoFkdAlHt5swco6XV9lChoBmgJaA9DCFHAdjBibm5AlIaUUpRoFU04AWgWR0CUe6HYHxBmdX2UKGgGaAloD0MIqWxYU9lIckCUhpRSlGgVTSgBaBZHQJSCu6BiCrd1fZQoaAZoCWgPQwjr4ctEES9vQJSGlFKUaBVNJAFoFkdAlILXnZCfH3V9lChoBmgJaA9DCEBOmDDaPXBAlIaUUpRoFU02AmgWR0CUhXdcjZ+QdX2UKGgGaAloD0MIij+KOnOKbkCUhpRSlGgVTXEBaBZHQJSFoIhQm/p1fZQoaAZoCWgPQwi29dN/1oJxQJSGlFKUaBVNNwFoFkdAlIZwtnPE9HV9lChoBmgJaA9DCHF0le4uP2xAlIaUUpRoFU06AWgWR0CUhpsMy8BddX2UKGgGaAloD0MIXCGsxlLNcECUhpRSlGgVTS4BaBZHQJSGuDFqBVd1fZQoaAZoCWgPQwjpmV5irPJsQJSGlFKUaBVNNQFoFkdAlIbdsBQvYnV9lChoBmgJaA9DCF+1MuGXVFhAlIaUUpRoFU3oA2gWR0CUhwtqYZ2qdX2UKGgGaAloD0MIl3DoLd4DckCUhpRSlGgVTVQBaBZHQJSHSTyJ9Ap1fZQoaAZoCWgPQwhi26LMRt5xQJSGlFKUaBVNMwFoFkdAlIeKWw/xD3V9lChoBmgJaA9DCJ+RCI1gcXJAlIaUUpRoFU06AWgWR0CUh9BwMpgDdX2UKGgGaAloD0MINum2RK6abECUhpRSlGgVTUYBaBZHQJSeLfl6qsF1fZQoaAZoCWgPQwiYM9sVepZvQJSGlFKUaBVNOAFoFkdAlJ7TWbwz+HV9lChoBmgJaA9DCNasM74vL1FAlIaUUpRoFU3oA2gWR0CUn8/JvHcUdX2UKGgGaAloD0MIx0lh3mOEb0CUhpRSlGgVTVsBaBZHQJSf0ZflZHN1fZQoaAZoCWgPQwgcKPBOPlk2QJSGlFKUaBVL02gWR0CUoJJ2+wkgdX2UKGgGaAloD0MINWJmn4c1ckCUhpRSlGgVTQsBaBZHQJSkV2q1gIB1fZQoaAZoCWgPQwgmUwWjUkJyQJSGlFKUaBVNEAFoFkdAlKRwGbCrLnV9lChoBmgJaA9DCJ/pJcYyYnFAlIaUUpRoFU0ZAWgWR0CUpZc3l0YCdX2UKGgGaAloD0MI8wGBzqS+c0CUhpRSlGgVTRoBaBZHQJSm0Jswco91fZQoaAZoCWgPQwg9mBQfX21xQJSGlFKUaBVNMAFoFkdAlKbUCzTnaHV9lChoBmgJaA9DCD1H5LvUNXJAlIaUUpRoFU0dAWgWR0CUp0pfx+a0dX2UKGgGaAloD0MID2PS30tdcUCUhpRSlGgVTQABaBZHQJSnVjMFEAp1fZQoaAZoCWgPQwhHjnQGhrNwQJSGlFKUaBVNMAFoFkdAlKd3B+F10XV9lChoBmgJaA9DCE2+2eZG7W9AlIaUUpRoFU1IAWgWR0CUqACU5dWydX2UKGgGaAloD0MIrTB9r+EZc0CUhpRSlGgVTUsBaBZHQJSoRVAAyVR1fZQoaAZoCWgPQwh+qZ83FShsQJSGlFKUaBVNGwFoFkdAlKpaxgRbr3V9lChoBmgJaA9DCF7VWS0wS3BAlIaUUpRoFU0sAWgWR0CUqxK3uuzQdX2UKGgGaAloD0MI/RAbLJzzZECUhpRSlGgVTbYBaBZHQJSsTCgsbvR1fZQoaAZoCWgPQwgt6/6xEAlxQJSGlFKUaBVNOQFoFkdAlKzIX9BKMHV9lChoBmgJaA9DCKSJd4AnrHJAlIaUUpRoFUvyaBZHQJSuLamGdqd1fZQoaAZoCWgPQwgb9RCN7jZBQJSGlFKUaBVL1mgWR0CUr1fKZDzAdX2UKGgGaAloD0MIFY21v7OHRUCUhpRSlGgVS/RoFkdAlK+C17Y023V9lChoBmgJaA9DCINtxJPd9EJAlIaUUpRoFUvKaBZHQJSwCaScLBt1fZQoaAZoCWgPQwjzdoTTAqhvQJSGlFKUaBVNLwFoFkdAlLDJblijL3V9lChoBmgJaA9DCL1UbMxrmnFAlIaUUpRoFU0wAWgWR0CUs8j3225QdX2UKGgGaAloD0MIpdk8DoN7bUCUhpRSlGgVS/RoFkdAlLSdcSoOx3V9lChoBmgJaA9DCGaEtweh/HBAlIaUUpRoFU01AWgWR0CUtSZwn6VMdX2UKGgGaAloD0MIJ02Dovl/cUCUhpRSlGgVTU4BaBZHQJS1MoOQQtl1fZQoaAZoCWgPQwi4O2u33WBxQJSGlFKUaBVNXgFoFkdAlLVcVpKzzHV9lChoBmgJaA9DCAclzLQ9QHBAlIaUUpRoFU12AWgWR0CUtvK/mDDkdX2UKGgGaAloD0MIHqZ9c78YcECUhpRSlGgVS/toFkdAlLdcsDnvD3V9lChoBmgJaA9DCBXj/E0o63BAlIaUUpRoFU06AWgWR0CUuVQxN7BwdX2UKGgGaAloD0MIWdqpuVyYckCUhpRSlGgVTVsBaBZHQJS5ddhRZU11fZQoaAZoCWgPQwiQZiyaDpNxQJSGlFKUaBVNMgFoFkdAlLsSKR+z+nV9lChoBmgJaA9DCKN4lbWN1HFAlIaUUpRoFU0TAWgWR0CUux6T4cm0dX2UKGgGaAloD0MImZtvRHd0cECUhpRSlGgVTRkBaBZHQJS7NKODJ2d1fZQoaAZoCWgPQwj6t8t+3aJuQJSGlFKUaBVNLAFoFkdAlLybD/EOy3V9lChoBmgJaA9DCKoNTkQ/XXHAlIaUUpRoFUudaBZHQJS9Nx6v7nB1fZQoaAZoCWgPQwhQqRJl76dxQJSGlFKUaBVNLQFoFkdAlL1fDgqEvnV9lChoBmgJaA9DCNoB1xWzuGZAlIaUUpRoFU0eA2gWR0CUvkMvRJEqdX2UKGgGaAloD0MI5Lz/jxMJbkCUhpRSlGgVTSEBaBZHQJS/goRZlnR1fZQoaAZoCWgPQwg5YcJoVj5LQJSGlFKUaBVN6ANoFkdAlMBzc2zfJnV9lChoBmgJaA9DCGwm32xzfFBAlIaUUpRoFUvkaBZHQJTAfrIHTql1fZQoaAZoCWgPQwhiSbn7HARwQJSGlFKUaBVNHQFoFkdAlMCc4gieNHV9lChoBmgJaA9DCK6dKAkJjG9AlIaUUpRoFU04AWgWR0CUwRbKifxudX2UKGgGaAloD0MIks7AyMt7cECUhpRSlGgVTTcBaBZHQJTBcpqh11Z1fZQoaAZoCWgPQwjMXUvIR8ZwQJSGlFKUaBVNRgFoFkdAlMIZzLfUF3V9lChoBmgJaA9DCA3/6QbK1nFAlIaUUpRoFUv0aBZHQJTEJrFfiP11fZQoaAZoCWgPQwj7A+W2fQ8iQJSGlFKUaBVLxWgWR0CUxGzQeFL4dX2UKGgGaAloD0MIj95wHzlQb0CUhpRSlGgVS/loFkdAlMR3VLBbfXV9lChoBmgJaA9DCANckC3LkHFAlIaUUpRoFU0qAWgWR0CUxJtYjjaPdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 372,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 6,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ffbaeccaf22d29b00e02c7ee8a36741a961d6b5d997428690326bc5687ae7e5b
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36fe2f773f84961aab7d858cb554385fb4830255a1a5318e07e8b4d605f92ab8
3
+ size 84637
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:42a864e827c1f50f41626ff0dd518b452ee4d9a23c1af62ad9cd34152042e9cf
3
- size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e28909952c112d82451ed60a9fa67985b9cdc219c4121ef14769821ef5e79da
3
+ size 43073
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PD
2
  Python: 3.7.13
3
  Stable-Baselines3: 1.5.0
4
  PyTorch: 1.11.0+cu113
5
- GPU Enabled: True
6
  Numpy: 1.21.6
7
- Gym: 0.21.0
 
2
  Python: 3.7.13
3
  Stable-Baselines3: 1.5.0
4
  PyTorch: 1.11.0+cu113
5
+ GPU Enabled: False
6
  Numpy: 1.21.6
7
+ Gym: 0.17.3
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:458c0ffe8c1e67b51a1c22266194d0b4532cb64e106eacd09a08d01e9aeabe5e
3
- size 193369
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b4cedd708c269944e8397c8a7ac94b7c6cddab35e2ad534ba0f0161b09ff489
3
+ size 182978
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 259.5070705167272, "std_reward": 21.90711934195792, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T09:24:20.732501"}
 
1
+ {"mean_reward": 258.22946295341757, "std_reward": 23.14424530622453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T12:43:52.170788"}