kikoarizeai's picture
Update README.md
cf0f0e6
|
raw
history blame
2.11 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - xtreme_en
metrics:
  - accuracy
  - f1
widget:
  - text: My name is Julia, I study at Imperial College, in London
    example_title: Example 1
  - text: My name is Sarah and I live in Paris
    example_title: Example 2
  - text: My name is Clara and I live in Berkeley, California
    example_title: Example 3
model-index:
  - name: XLM-RoBERTa-xtreme-en
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xtreme_en
          type: xtreme_en
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9109484079686702
          - name: F1
            type: f1
            value: 0.7544312444026322

XLM-RoBERTa-xtreme-en

This model is a fine-tuned version of xlm-roberta-base on the xtreme_en dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2838
  • Accuracy: 0.9109
  • F1: 0.7544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6502 1.0 235 0.3328 0.8995 0.7251
0.3239 2.0 470 0.2897 0.9101 0.7473
0.2644 3.0 705 0.2838 0.9109 0.7544

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1