metadata
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme_en
metrics:
- accuracy
- f1
widget:
- text: My name is Julia, I study at Imperial College, in London
example_title: Example 1
- text: My name is Sarah and I live in Paris
example_title: Example 2
- text: My name is Clara and I live in Berkeley, California
example_title: Example 3
model-index:
- name: XLM-RoBERTa-xtreme-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme_en
type: xtreme_en
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9109484079686702
- name: F1
type: f1
value: 0.7544312444026322
XLM-RoBERTa-xtreme-en
This model is a fine-tuned version of xlm-roberta-base on the xtreme_en dataset. It achieves the following results on the evaluation set:
- Loss: 0.2838
- Accuracy: 0.9109
- F1: 0.7544
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6502 | 1.0 | 235 | 0.3328 | 0.8995 | 0.7251 |
0.3239 | 2.0 | 470 | 0.2897 | 0.9101 | 0.7473 |
0.2644 | 3.0 | 705 | 0.2838 | 0.9109 | 0.7544 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1