Edit model card

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Account Name.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Account Name.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Account No.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Account No.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
  • Overall Precision: 1.0
  • Overall Recall: 1.0
  • Overall F1: 1.0
  • Overall Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Account Name.key Account Name.value Account No.key Account No.value Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0635 100.0 200 0.0001 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0002 200.0 400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0001 300.0 600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0001 400.0 800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0001 500.0 1000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 600.0 1200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 700.0 1400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 800.0 1600 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 900.0 1800 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 1000.0 2000 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 1100.0 2200 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0
0.0 1200.0 2400 0.0000 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
8
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for arnabbasak/lilt-en-funsd

Finetuned
(44)
this model