arnabdhar's picture
Update README.md
3fba2d1
metadata
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
  - pytorch
  - amazon-rating
  - DistilBERTForSequenceClassification
  - generated_from_trainer
metrics:
  - accuracy
  - matthews_correlation
model-index:
  - name: distilbert-base-amazon-multi
    results: []
datasets:
  - mteb/amazon_reviews_multi
language:
  - en
  - de
  - es
  - fr
  - ja
  - zh
library_name: transformers
pipeline_tag: text-classification

distilbert-base-amazon-multi

This model is a fine-tuned version of distilbert-base-multilingual-cased on the mteb/amazon_reviews_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9292
  • Accuracy: 0.6055
  • Matthews Correlation: 0.5072

Training procedure

This model was fine tuned on Google Colab using a single NVIDIA V100 GPU with 16GB of VRAM. It took around 13 hours to finish the finetuning of 10_000 steps.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 320
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 100000

Training results

Training Loss Epoch Step Validation Loss Accuracy Matthews Correlation
1.0008 0.26 10000 1.0027 0.5616 0.4520
0.9545 0.51 20000 0.9705 0.5810 0.4788
0.9216 0.77 30000 0.9415 0.5883 0.4868
0.8765 1.03 40000 0.9495 0.5891 0.4871
0.8837 1.28 50000 0.9254 0.5992 0.4997
0.8753 1.54 60000 0.9199 0.6014 0.5029
0.8572 1.8 70000 0.9108 0.6090 0.5117
0.7851 2.05 80000 0.9276 0.6052 0.5066
0.7918 2.31 90000 0.9292 0.6055 0.5072
0.793 2.57 100000 0.9288 0.6064 0.5084

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0