metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- ru
- en
base_model: sentence-transformers/LaBSE
inference: true
widget:
- source_sentence: Москва
sentences:
- Moscow
- Mytishchi
- Meshchera
example_title: Geonames cities
license: apache-2.0
LaBSE_geonames_RU_RELOCATION
This is a sentence-transformers model: It maps geonames to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model fine tuned on geonames cities15000 in RU and popular relocation countries.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
cities = ["Vladivostok", "Moscow"]
model = SentenceTransformer('artefucktor/LaBSE_geonames_RU_RELOCATION')
embeddings = model.encode(cities)
print(embeddings)
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 5585 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)