arturkulmizev's picture
End of training
ece2a2a verified
|
raw
history blame
4.54 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: deberta-base.as.finetuned
    results: []

deberta-base.as.finetuned

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.6126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.6155 0.47 1000 6.5530
6.4654 0.93 2000 6.4358
6.3684 1.4 3000 6.3436
6.2843 1.87 4000 6.2675
6.2171 2.33 5000 6.2000
6.1687 2.8 6000 6.1522
6.122 3.27 7000 6.1094
6.0828 3.73 8000 6.0599
6.0346 4.2 9000 6.0132
5.9935 4.67 10000 5.9940
5.9553 5.13 11000 5.9589
5.9347 5.6 12000 5.9315
5.9105 6.07 13000 5.8996
5.8851 6.53 14000 5.8859
5.8632 7.0 15000 5.8626
5.847 7.47 16000 5.8495
5.8393 7.93 17000 5.8276
5.8041 8.4 18000 5.8096
5.7922 8.87 19000 5.7968
5.7758 9.33 20000 5.7869
5.7656 9.8 21000 5.7795
5.7533 10.27 22000 5.7652
5.7484 10.73 23000 5.7511
5.7352 11.2 24000 5.7417
5.7215 11.67 25000 5.7327
5.7126 12.13 26000 5.7352
5.7048 12.6 27000 5.7233
5.6887 13.07 28000 5.7106
5.6892 13.53 29000 5.7003
5.6819 14.0 30000 5.6993
5.6665 14.47 31000 5.7001
5.6704 14.93 32000 5.6936
5.6608 15.4 33000 5.6828
5.6575 15.87 34000 5.6795
5.6552 16.33 35000 5.6686
5.647 16.8 36000 5.6676
5.639 17.27 37000 5.6659
5.6346 17.73 38000 5.6644
5.633 18.2 39000 5.6648
5.6276 18.67 40000 5.6569
5.6252 19.13 41000 5.6488
5.6254 19.6 42000 5.6468
5.6198 20.07 43000 5.6485
5.6104 20.53 44000 5.6394
5.6117 21.0 45000 5.6417
5.6048 21.47 46000 5.6362
5.5973 21.93 47000 5.6378
5.5923 22.4 48000 5.6312
5.6047 22.87 49000 5.6308
5.5955 23.33 50000 5.6341
5.5947 23.8 51000 5.6257
5.5979 24.27 52000 5.6330
5.5924 24.73 53000 5.6200
5.5996 25.2 54000 5.6175
5.5823 25.66 55000 5.6245
5.5884 26.13 56000 5.6207
5.5828 26.6 57000 5.6184
5.5844 27.06 58000 5.6255
5.5793 27.53 59000 5.6269
5.5809 28.0 60000 5.6185
5.5786 28.46 61000 5.6185
5.5765 28.93 62000 5.6204
5.5814 29.4 63000 5.6257
5.5837 29.86 64000 5.6163

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2