aruca's picture
End of training
d56ac9f verified
|
raw
history blame
4.19 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
model-index:
  - name: pegasus_x-meeting-summarizer-gpt3.5
    results: []

pegasus_x-meeting-summarizer-gpt3.5

This model is a fine-tuned version of google/pegasus-x-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6064

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.7528 0.05 10 2.5788
2.7466 0.11 20 2.2694
2.4032 0.16 30 2.1298
2.3188 0.21 40 2.0389
2.1827 0.27 50 1.9788
2.1284 0.32 60 1.9291
2.1275 0.37 70 1.9024
2.0536 0.43 80 1.8587
1.9901 0.48 90 1.8407
1.9769 0.53 100 1.8211
1.9643 0.59 110 1.8048
1.8846 0.64 120 1.7921
1.9294 0.69 130 1.7837
1.903 0.75 140 1.7664
1.9329 0.8 150 1.7606
1.865 0.85 160 1.7493
1.8414 0.91 170 1.7404
1.8793 0.96 180 1.7310
1.8519 1.01 190 1.7165
1.7918 1.07 200 1.7132
1.7815 1.12 210 1.7087
1.7503 1.17 220 1.7019
1.7545 1.23 230 1.6937
1.7088 1.28 240 1.6905
1.7231 1.33 250 1.6862
1.7584 1.39 260 1.6807
1.7537 1.44 270 1.6762
1.7867 1.49 280 1.6685
1.7666 1.55 290 1.6642
1.7076 1.6 300 1.6580
1.6894 1.65 310 1.6596
1.7207 1.71 320 1.6535
1.6743 1.76 330 1.6565
1.7197 1.81 340 1.6491
1.7027 1.87 350 1.6438
1.7161 1.92 360 1.6388
1.7256 1.97 370 1.6368
1.6623 2.03 380 1.6370
1.6041 2.08 390 1.6402
1.6308 2.13 400 1.6289
1.6384 2.19 410 1.6333
1.6223 2.24 420 1.6291
1.6163 2.29 430 1.6212
1.6232 2.35 440 1.6267
1.6081 2.4 450 1.6302
1.619 2.45 460 1.6196
1.5802 2.51 470 1.6215
1.6313 2.56 480 1.6216
1.5968 2.61 490 1.6153
1.589 2.67 500 1.6137
1.6087 2.72 510 1.6129
1.5614 2.77 520 1.6085
1.6109 2.83 530 1.6067
1.596 2.88 540 1.6097
1.6343 2.93 550 1.5979
1.5774 2.99 560 1.6064

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2