whisper-base-ar-2 / README.md
arun100's picture
End of training
9615cb7 verified
metadata
license: apache-2.0
base_model: arun100/whisper-base-ar-1
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Arabic Derived
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs ar_eg
          type: google/fleurs
          config: ar_eg
          split: test
          args: ar_eg
        metrics:
          - name: Wer
            type: wer
            value: 44.287968920723564

Whisper Base Arabic Derived

This model is a fine-tuned version of arun100/whisper-base-ar-1 on the google/fleurs ar_eg dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6670
  • Wer: 44.2880

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5692 52.63 500 0.6253 54.7894
0.3447 105.26 1000 0.6001 45.2106
0.2067 157.89 1500 0.6109 44.7372
0.1273 210.53 2000 0.6303 44.7372
0.0788 263.16 2500 0.6508 44.4579
0.0526 315.79 3000 0.6670 44.2880
0.0404 368.42 3500 0.6784 44.7129
0.0335 421.05 4000 0.6860 46.2668
0.0296 473.68 4500 0.6907 44.5915
0.0287 526.32 5000 0.6924 44.6279

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0