|
--- |
|
language: |
|
- zh |
|
base_model: |
|
- JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW |
|
pipeline_tag: automatic-speech-recognition |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
library_name: ctranslate2 |
|
--- |
|
|
|
# asadfgglie/faster-whisper-large-v3-zh-TW |
|
|
|
此模型是將[JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW](https://huggingface.co/JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW) |
|
轉換成`CTranslate2`格式的模型,可以在[faster-whisper](https://github.com/systran/faster-whisper)中使用。 |
|
|
|
## Example |
|
|
|
```python |
|
from faster_whisper import WhisperModel |
|
|
|
model = WhisperModel("asadfgglie/faster-whisper-large-v3-zh-TW") |
|
|
|
segments, info = model.transcribe("audio.mp3") |
|
for segment in segments: |
|
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) |
|
``` |
|
|
|
## Conversion details |
|
|
|
原始模型是根據以下指令轉換: |
|
|
|
``` |
|
ct2-transformers-converter --output_dir faster-whisper-large-v3-zh-TW \ |
|
--model JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW \ |
|
--copy_files preprocessor_config.json |
|
``` |
|
|
|
在轉換完成後,請記得自行到原始模型的[model card](https://huggingface.co/openai/whisper-large-v3)中下載`tokenizer.json`。 |
|
(因為`JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW`的repo中沒有,而`faster_whishper`又需要這個酷東東來做tokenizer) |
|
|
|
如果有需要,你可以在轉換指令中添加`--quantization float16`來指定量化精度。不過在推理時你依舊可以使用[`compute_type`](https://opennmt.net/CTranslate2/quantization.html)參數來進一步量化/去除量化。 |
|
|