asadfgglie's picture
Update README.md
09087a9 verified
metadata
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli
    results: []
datasets:
  - asadfgglie/nli-zh-tw-all
  - asadfgglie/BanBan_2024-10-17-facial_expressions-nli
language:
  - zh
pipeline_tag: zero-shot-classification

mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli

This model is merge dataset stratege version of v3.0 and v4.0.

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4531
  • F1 Macro: 0.8330
  • F1 Micro: 0.8337
  • Accuracy Balanced: 0.8331
  • Accuracy: 0.8337
  • Precision Macro: 0.8330
  • Recall Macro: 0.8331
  • Precision Micro: 0.8337
  • Recall Micro: 0.8337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 20241201
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3748 0.85 200 0.4218 0.7971 0.7999 0.7970 0.7999 0.7973 0.7970 0.7999 0.7999
0.2693 1.69 400 0.4523 0.8061 0.8078 0.8077 0.8078 0.8053 0.8077 0.8078 0.8078
0.1905 2.54 600 0.4720 0.8226 0.8242 0.8241 0.8242 0.8217 0.8241 0.8242 0.8242

Eval results

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.48 0.269 0.484 0.453
eval_f1_macro 0.821 0.909 0.816 0.833
eval_f1_micro 0.822 0.909 0.818 0.834
eval_accuracy_balanced 0.821 0.909 0.816 0.833
eval_accuracy 0.822 0.909 0.818 0.834
eval_precision_macro 0.821 0.909 0.816 0.833
eval_recall_macro 0.821 0.909 0.816 0.833
eval_precision_micro 0.822 0.909 0.818 0.834
eval_recall_micro 0.822 0.909 0.818 0.834
eval_runtime 239.87 4.066 58.954 236.797
eval_samples_per_second 35.436 232.633 32.042 31.913
eval_steps_per_second 0.279 1.967 0.254 0.253
epoch 2.99 2.99 2.99 2.99
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3