asaoka's picture
Update README.md
8df841f verified
---
library_name: peft
---
# モデル概要
[meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)を日本語データ([taka-yayoi/databricks-dolly-15k-ja](https://huggingface.co/datasets/taka-yayoi/databricks-dolly-15k-ja))を用いてインストラクションチューニングしました.
# 使用方法
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# モデルの読み込み
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
),
device_map={"":0}
)
# トークナイザーの読み込み
tokenizer = AutoTokenizer.from_pretrained(
"asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese",
)
# LoRAの読み込み
model = PeftModel.from_pretrained(
model,
"asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese",
device_map={"":0}
)
model.eval()
# プロンプトの準備
prompt = "### Instruction: 富士山とは?\n\n### Response: "
# 推論の実行
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
使用方法は,[「Google Colab で Llama-2-7B のQLoRA ファインチューニングを試す」](https://note.com/npaka/n/na7c631175111#f2af0e53-4ef3-4288-b152-6524f1b940a7)を参照しました.
# トークナイザーの日本語への拡張
### 1. 日本語のトークナイザーを学習
トークナイザーの学習は,[ce-lery/japanese-mistral-300m-base](https://huggingface.co/ce-lery/japanese-mistral-300m-base)を参照しました.
### 2. Llama-2-7b-hfのトークナイザーと日本語のトークナイザーをマージ
トークナイザーのマージは,[「日本語が話せるLlamaモデルをDIYする」](https://qiita.com/Taiyou2000/items/3229d320c252d6de33c7)を参照しました.
# トレーニング方法
- ファインチューニング:インストラクションチューニング + QLoRA(4bitLoRA)
トレーニング方法は,[「MetaのLlama 2をDatabricksでQLoRAを使ってファインチューニングしてみる」](https://qiita.com/taka_yayoi/items/a973fa2d08062224d422)を参照しました.
# JGLUEスコア
| タスク | Llama-2-7b-hf | This Model |
|:-|:-|:-|
| jcommonsenseqa-1.1-0.6(acc) | 0.7274 | 0.7060 |
[JGLUEスコア](https://aclanthology.org/2022.lrec-1.317/)は,Stability AI社の[lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness)を用いて
算出しました.JGLUEスコアの算出に用いたスクリプトを下記に示します.
- Llama-2-7b-hf
```bash
!python main.py \
--model hf-causal-experimental \
--model_args pretrained=meta-llama/Llama-2-7b-hf \
--tasks jcommonsenseqa-1.1-0.6 \
--num_fewshot 3 \
--device cuda \
--output_path ./results.json
```
- This Model
```bash
!python main.py \
--model hf-causal-experimental \
--model_args pretrained=meta-llama/Llama-2-7b-hf,peft=asaoka/Llama-2-7b-hf-qlora-dolly15k-japanese \
--tasks jcommonsenseqa-1.1-0.6 \
--num_fewshot 3 \
--device cuda \
--output_path ./results.json
```