metadata
license: mit
language:
- en
datasets:
- yahma/alpaca-cleaned
pipeline_tag: text2text-generation
tags:
- alpaca
- llama
- chat
- gpt4
- lora
This repo contains a low-rank adapter for Llama-7b finetuned on the Cleaned Alpaca version of the Dataset.
This version was finetuned using:
python finetune.py \
--base_model 'llama_7b_hf' \
--data_path 'yahma/alpaca-cleaned' \
--output_dir 'ashwinram472/lora-alpaca-cleaned' \
--batch_size 128 \
--micro_batch_size 4 \
--num_epochs 10 \
--learning_rate 1e-4 \
--cutoff_len 512 \
--val_set_size 2000 \
--lora_r 16 \
--lora_alpha 16 \
--lora_dropout 0.05 \
--lora_target_modules '[q_proj,k_proj,v_proj,o_proj]' \
--train_on_inputs \
--group_by_length \
--wandb_project 'alpaca-lora-cleaned'
--wandb_run_name 'alpaca-lora-10epoch'
For Training logs visit W&B report: here.
model = LlamaForCausalLM.from_pretrained(
'/llama_7b_hf',
load_in_8bit=True,
torch_dtype=torch.float16,
device_map='auto',
)
lora_weights = 'ashwinram472/alpaca-cleaned-lora-7b'
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
tokenizer = LlamaTokenizer.from_pretrained("../models/llama_7b_hf")
def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
if input_ctxt:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_ctxt}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
)
model.eval()
instruction = "Count up from 1 to 500."
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
prompt = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
print(response.split("### Response:")[1].strip().split("### Instruction")[0])