Model description
iGPT-fr ๐ซ๐ท is a GPT model for French pre-trained incremental language model developped by the Laboratoire de Linguistique Formelle (LLF). We adapted GPT-fr ๐ซ๐ท model to generate images conditionned by text inputs.
Intended uses & limitations
The model can be leveraged for image generation tasks. The model is currently under a developpment phase.
How to use
The model might be used through the ๐ค Transformers
librairie. You will also need to install the Taming Transformers
library for high-resolution image synthesis:
pip install git+https://github.com/CompVis/taming-transformers.git
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from taming.models import vqgan
import torch
from PIL import Image
import numpy as np
# Load VQGAN model
vqgan_ckpt = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt", force_download=False)
vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml", force_download=False)
config = OmegaConf.load(vqgan_config)
vqgan_model = vqgan.VQModel(**config.model.params)
vqgan_model.eval().requires_grad_(False)
vqgan_model.init_from_ckpt(vqgan_ckpt)
# Load pretrained model
model = GPT2LMHeadModel.from_pretrained("asi/igpt-fr-cased-base")
model.eval()
tokenizer = GPT2Tokenizer.from_pretrained("asi/igpt-fr-cased-base")
# Generate a sample of text
input_sentence = "Une carte de l'europe"
input_ids = tokenizer.encode(input_sentence, return_tensors='pt')
input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1) # Add image generation token
greedy_output = model.generate(
input_ids.to(device),
max_length=256+input_ids.shape[1],
do_sample=True,
top_p=0.92,
top_k=0)
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.)/2.
x = x.permute(1,2,0).numpy()
x = (255*x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == "RGB":
x = x.convert("RGB")
return x
z_idx = greedy_output[0, input_ids.shape[1]:] - 50001
z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256))
x_rec = vqgan_model.decode(z_quant).to('cpu')[0]
display(custom_to_pil(x_rec))
You may also filter results based on CLIP:
from tqdm import tqdm
def hallucinate(prompt, num_images=64):
input_ids = tokenizer.encode(prompt, return_tensors='pt')
input_ids = torch.cat((input_ids, torch.tensor([[50000]])), 1).to(device) # Add image generation token
all_images = []
for i in tqdm(range(num_images)):
greedy_output = model.generate(
input_ids.to(device),
max_length=256+input_ids.shape[1],
do_sample=True,
top_p=0.92,
top_k=0)
z_idx = greedy_output[0, input_ids.shape[1]:] - 50001
z_quant = vqgan_model.quantize.get_codebook_entry(z_idx, shape=(1, 16, 16, 256))
x_rec = vqgan_model.decode(z_quant).to('cpu')[0]
all_images.append(custom_to_pil(x_rec))
return all_images
input_sentence = "Une carte de l'europe"
all_images = hallucinate(input_sentence)
from transformers import pipeline
opus_model = "Helsinki-NLP/opus-mt-fr-en"
opus_translator = pipeline("translation", model=opus_model)
opus_translator(input_sentence)
from transformers import CLIPProcessor, CLIPModel
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def clip_top_k(prompt, images, k=8):
prompt_fr = opus_translator(input_sentence)[0]['translation_text']
inputs = clip_processor(text=prompt_fr, images=images, return_tensors="pt", padding=True)
outputs = clip_model(**inputs)
logits = outputs.logits_per_text # this is the image-text similarity score
scores = np.array(logits[0].detach()).argsort()[-k:][::-1]
return [images[score] for score in scores]
filtered_images = clip_top_k(input_sentence, all_images)
for fi in filtered_images:
display(fi)
Training data
We created a dedicated corpus to train our generative model. The training corpus consists in text-image pairs. We aggregated portions from existing corpora: Laion-5B and WIT. The final dataset includes 10,807,534 samples.
Training procedure
We pre-trained the model on the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 8 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 1161.22 kgCO2eq, using the Machine Learning Impact calculator presented in Lacoste et al., (2019).
- Downloads last month
- 24