metadata
library_name: transformers
language:
- zul
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- NCHLT/ZULU
metrics:
- wer
model-index:
- name: facebook/w2v-bert-2.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NCHLT
type: NCHLT/ZULU
metrics:
- name: Wer
type: wer
value: 0.5654182709135457
facebook/w2v-bert-2.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the NCHLT dataset. It achieves the following results on the evaluation set:
- Loss: 0.5160
- Wer: 0.5654
- Cer: 0.1543
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.9749 | 1.0 | 569 | 0.2271 | 0.2541 | 0.0418 |
0.1275 | 2.0 | 1138 | 0.1601 | 0.1873 | 0.0314 |
0.0836 | 3.0 | 1707 | 0.1292 | 0.1541 | 0.0250 |
0.0618 | 4.0 | 2276 | 0.1122 | 0.1208 | 0.0213 |
0.0478 | 5.0 | 2845 | 0.1032 | 0.1068 | 0.0190 |
0.0384 | 6.0 | 3414 | 0.1039 | 0.1036 | 0.0187 |
0.0315 | 7.0 | 3983 | 0.0911 | 0.0882 | 0.0166 |
0.0259 | 8.0 | 4552 | 0.1015 | 0.1015 | 0.0187 |
0.0219 | 9.0 | 5121 | 0.0971 | 0.0874 | 0.0162 |
0.0188 | 10.0 | 5690 | 0.0918 | 0.0873 | 0.0160 |
0.0168 | 11.0 | 6259 | 0.0931 | 0.0826 | 0.0155 |
0.015 | 12.0 | 6828 | 0.0983 | 0.0839 | 0.0159 |
0.014 | 13.0 | 7397 | 0.1054 | 0.0878 | 0.0160 |
0.0117 | 14.0 | 7966 | 0.1033 | 0.0787 | 0.0150 |
0.0099 | 15.0 | 8535 | 0.1068 | 0.0791 | 0.0150 |
0.011 | 16.0 | 9104 | 0.1013 | 0.0786 | 0.0151 |
0.0093 | 17.0 | 9673 | 0.1083 | 0.0805 | 0.0158 |
0.0085 | 18.0 | 10242 | 0.1012 | 0.0747 | 0.0144 |
0.0071 | 19.0 | 10811 | 0.0971 | 0.0743 | 0.0145 |
0.0063 | 20.0 | 11380 | 0.0927 | 0.0726 | 0.0141 |
0.0063 | 21.0 | 11949 | 0.0992 | 0.0737 | 0.0139 |
0.0067 | 22.0 | 12518 | 0.0989 | 0.0788 | 0.0144 |
0.0069 | 23.0 | 13087 | 0.1005 | 0.0691 | 0.0133 |
0.0058 | 24.0 | 13656 | 0.1197 | 0.0724 | 0.0144 |
0.0055 | 25.0 | 14225 | 0.0939 | 0.0720 | 0.0135 |
0.0043 | 26.0 | 14794 | 0.0982 | 0.0655 | 0.0130 |
0.0053 | 27.0 | 15363 | 0.0941 | 0.0708 | 0.0139 |
0.0052 | 28.0 | 15932 | 0.0985 | 0.0685 | 0.0131 |
0.0043 | 29.0 | 16501 | 0.1055 | 0.0752 | 0.0138 |
0.005 | 30.0 | 17070 | 0.0948 | 0.0653 | 0.0133 |
0.0037 | 31.0 | 17639 | 0.0967 | 0.0658 | 0.0127 |
0.0045 | 32.0 | 18208 | 0.0936 | 0.0680 | 0.0133 |
0.003 | 33.0 | 18777 | 0.1062 | 0.0621 | 0.0126 |
0.0036 | 34.0 | 19346 | 0.1002 | 0.0737 | 0.0137 |
0.0035 | 35.0 | 19915 | 0.1091 | 0.0695 | 0.0137 |
0.0027 | 36.0 | 20484 | 0.1061 | 0.0684 | 0.0134 |
0.0038 | 37.0 | 21053 | 0.0839 | 0.0623 | 0.0125 |
0.0025 | 38.0 | 21622 | 0.1079 | 0.0669 | 0.0133 |
0.0029 | 39.0 | 22191 | 0.0898 | 0.0625 | 0.0126 |
0.0029 | 40.0 | 22760 | 0.0941 | 0.0630 | 0.0124 |
0.0023 | 41.0 | 23329 | 0.1058 | 0.0640 | 0.0124 |
0.0021 | 42.0 | 23898 | 0.0955 | 0.0589 | 0.0116 |
0.0022 | 43.0 | 24467 | 0.0965 | 0.0647 | 0.0126 |
0.002 | 44.0 | 25036 | 0.0939 | 0.0605 | 0.0120 |
0.0016 | 45.0 | 25605 | 0.0973 | 0.0599 | 0.0123 |
0.0015 | 46.0 | 26174 | 0.1069 | 0.0604 | 0.0123 |
0.0012 | 47.0 | 26743 | 0.0997 | 0.0564 | 0.0116 |
0.0011 | 48.0 | 27312 | 0.0882 | 0.0559 | 0.0111 |
0.0011 | 49.0 | 27881 | 0.1167 | 0.0574 | 0.0119 |
0.002 | 50.0 | 28450 | 0.0950 | 0.0538 | 0.0110 |
0.0015 | 51.0 | 29019 | 0.0916 | 0.0548 | 0.0112 |
0.001 | 52.0 | 29588 | 0.0996 | 0.0591 | 0.0119 |
0.0008 | 53.0 | 30157 | 0.0978 | 0.0575 | 0.0117 |
0.001 | 54.0 | 30726 | 0.0967 | 0.0551 | 0.0113 |
0.001 | 55.0 | 31295 | 0.0948 | 0.0577 | 0.0115 |
0.0013 | 56.0 | 31864 | 0.0963 | 0.0563 | 0.0115 |
0.0011 | 57.0 | 32433 | 0.1028 | 0.0593 | 0.0121 |
0.0008 | 58.0 | 33002 | 0.1064 | 0.0578 | 0.0118 |
0.0011 | 59.0 | 33571 | 0.1034 | 0.0573 | 0.0115 |
0.0007 | 60.0 | 34140 | 0.1102 | 0.0561 | 0.0115 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3