w2v-bert-2.0-CV_Fleurs-lg-10hrs-v4
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8790
- Wer: 0.3341
- Cer: 0.0706
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.4106 | 1.0 | 513 | 0.5293 | 0.5666 | 0.1264 |
0.4775 | 2.0 | 1026 | 0.4882 | 0.5251 | 0.1118 |
0.3696 | 3.0 | 1539 | 0.3973 | 0.4565 | 0.0998 |
0.3007 | 4.0 | 2052 | 0.3896 | 0.4311 | 0.0932 |
0.2564 | 5.0 | 2565 | 0.3743 | 0.4372 | 0.0966 |
0.2273 | 6.0 | 3078 | 0.3549 | 0.4184 | 0.0880 |
0.203 | 7.0 | 3591 | 0.3836 | 0.4001 | 0.0847 |
0.1775 | 8.0 | 4104 | 0.3694 | 0.4132 | 0.0855 |
0.159 | 9.0 | 4617 | 0.3487 | 0.4137 | 0.0890 |
0.1444 | 10.0 | 5130 | 0.3705 | 0.4277 | 0.0892 |
0.1262 | 11.0 | 5643 | 0.3620 | 0.3982 | 0.0828 |
0.1139 | 12.0 | 6156 | 0.3666 | 0.4055 | 0.0842 |
0.1015 | 13.0 | 6669 | 0.3656 | 0.4011 | 0.0836 |
0.0914 | 14.0 | 7182 | 0.3573 | 0.3928 | 0.0834 |
0.0836 | 15.0 | 7695 | 0.3798 | 0.3795 | 0.0790 |
0.0729 | 16.0 | 8208 | 0.4289 | 0.3896 | 0.0822 |
0.0652 | 17.0 | 8721 | 0.4778 | 0.4157 | 0.0874 |
0.0599 | 18.0 | 9234 | 0.4570 | 0.3796 | 0.0792 |
0.0504 | 19.0 | 9747 | 0.4444 | 0.4125 | 0.0856 |
0.0498 | 20.0 | 10260 | 0.4612 | 0.3945 | 0.0842 |
0.0434 | 21.0 | 10773 | 0.4881 | 0.4002 | 0.0843 |
0.0386 | 22.0 | 11286 | 0.5099 | 0.3777 | 0.0804 |
0.0381 | 23.0 | 11799 | 0.4904 | 0.3866 | 0.0824 |
0.0344 | 24.0 | 12312 | 0.4622 | 0.4028 | 0.0834 |
0.0302 | 25.0 | 12825 | 0.4986 | 0.3918 | 0.0820 |
0.0268 | 26.0 | 13338 | 0.5162 | 0.3954 | 0.0812 |
0.0272 | 27.0 | 13851 | 0.4748 | 0.3774 | 0.0791 |
0.0235 | 28.0 | 14364 | 0.4718 | 0.3823 | 0.0785 |
0.0219 | 29.0 | 14877 | 0.5318 | 0.3738 | 0.0797 |
0.0205 | 30.0 | 15390 | 0.5196 | 0.3769 | 0.0783 |
0.0203 | 31.0 | 15903 | 0.5203 | 0.3741 | 0.0788 |
0.019 | 32.0 | 16416 | 0.5031 | 0.3858 | 0.0809 |
0.0179 | 33.0 | 16929 | 0.5772 | 0.3745 | 0.0810 |
0.0175 | 34.0 | 17442 | 0.4906 | 0.3676 | 0.0763 |
0.0166 | 35.0 | 17955 | 0.5371 | 0.3694 | 0.0786 |
0.0138 | 36.0 | 18468 | 0.5748 | 0.3744 | 0.0788 |
0.0134 | 37.0 | 18981 | 0.5343 | 0.3697 | 0.0778 |
0.0135 | 38.0 | 19494 | 0.5407 | 0.3839 | 0.0804 |
0.0123 | 39.0 | 20007 | 0.5343 | 0.3661 | 0.0767 |
0.0124 | 40.0 | 20520 | 0.5633 | 0.3801 | 0.0817 |
0.0131 | 41.0 | 21033 | 0.5581 | 0.3633 | 0.0774 |
0.0094 | 42.0 | 21546 | 0.5862 | 0.3684 | 0.0789 |
0.0101 | 43.0 | 22059 | 0.5479 | 0.3646 | 0.0761 |
0.0094 | 44.0 | 22572 | 0.5738 | 0.3621 | 0.0761 |
0.0078 | 45.0 | 23085 | 0.5284 | 0.3782 | 0.0777 |
0.0074 | 46.0 | 23598 | 0.6277 | 0.3725 | 0.0790 |
0.01 | 47.0 | 24111 | 0.5826 | 0.3686 | 0.0765 |
0.0088 | 48.0 | 24624 | 0.5601 | 0.3660 | 0.0761 |
0.0083 | 49.0 | 25137 | 0.5410 | 0.3606 | 0.0769 |
0.0074 | 50.0 | 25650 | 0.5592 | 0.3613 | 0.0780 |
0.007 | 51.0 | 26163 | 0.5891 | 0.3690 | 0.0779 |
0.0067 | 52.0 | 26676 | 0.5807 | 0.3662 | 0.0779 |
0.0067 | 53.0 | 27189 | 0.5851 | 0.3640 | 0.0773 |
0.0065 | 54.0 | 27702 | 0.5989 | 0.3667 | 0.0767 |
0.005 | 55.0 | 28215 | 0.5746 | 0.3757 | 0.0785 |
0.0071 | 56.0 | 28728 | 0.5823 | 0.3610 | 0.0757 |
0.005 | 57.0 | 29241 | 0.6048 | 0.3562 | 0.0758 |
0.0046 | 58.0 | 29754 | 0.6254 | 0.3561 | 0.0753 |
0.0055 | 59.0 | 30267 | 0.6036 | 0.3533 | 0.0755 |
0.004 | 60.0 | 30780 | 0.5876 | 0.3605 | 0.0758 |
0.0042 | 61.0 | 31293 | 0.5782 | 0.3643 | 0.0776 |
0.0034 | 62.0 | 31806 | 0.6118 | 0.3656 | 0.0748 |
0.004 | 63.0 | 32319 | 0.5830 | 0.3650 | 0.0756 |
0.0049 | 64.0 | 32832 | 0.5946 | 0.3579 | 0.0755 |
0.0034 | 65.0 | 33345 | 0.5856 | 0.3482 | 0.0725 |
0.0023 | 66.0 | 33858 | 0.6186 | 0.3513 | 0.0739 |
0.0019 | 67.0 | 34371 | 0.5910 | 0.3664 | 0.0760 |
0.002 | 68.0 | 34884 | 0.6762 | 0.3597 | 0.0764 |
0.0027 | 69.0 | 35397 | 0.6270 | 0.3503 | 0.0723 |
0.0026 | 70.0 | 35910 | 0.6596 | 0.3551 | 0.0728 |
0.0024 | 71.0 | 36423 | 0.6216 | 0.3563 | 0.0744 |
0.0021 | 72.0 | 36936 | 0.6250 | 0.3483 | 0.0728 |
0.0018 | 73.0 | 37449 | 0.5963 | 0.3524 | 0.0735 |
0.0028 | 74.0 | 37962 | 0.6323 | 0.3541 | 0.0745 |
0.0019 | 75.0 | 38475 | 0.6252 | 0.3459 | 0.0735 |
0.0021 | 76.0 | 38988 | 0.6399 | 0.3500 | 0.0734 |
0.0013 | 77.0 | 39501 | 0.6548 | 0.3499 | 0.0734 |
0.001 | 78.0 | 40014 | 0.6746 | 0.3503 | 0.0743 |
0.0011 | 79.0 | 40527 | 0.6395 | 0.3533 | 0.0739 |
0.0007 | 80.0 | 41040 | 0.6779 | 0.3478 | 0.0732 |
0.0007 | 81.0 | 41553 | 0.6806 | 0.3463 | 0.0724 |
0.0009 | 82.0 | 42066 | 0.7214 | 0.3453 | 0.0726 |
0.0017 | 83.0 | 42579 | 0.6250 | 0.3445 | 0.0721 |
0.0009 | 84.0 | 43092 | 0.6632 | 0.3443 | 0.0717 |
0.0005 | 85.0 | 43605 | 0.6850 | 0.3397 | 0.0709 |
0.0002 | 86.0 | 44118 | 0.7168 | 0.3417 | 0.0717 |
0.0001 | 87.0 | 44631 | 0.7629 | 0.3432 | 0.0720 |
0.0002 | 88.0 | 45144 | 0.7349 | 0.3385 | 0.0718 |
0.0003 | 89.0 | 45657 | 0.7347 | 0.3377 | 0.0715 |
0.0002 | 90.0 | 46170 | 0.7449 | 0.3433 | 0.0720 |
0.0001 | 91.0 | 46683 | 0.7630 | 0.3353 | 0.0708 |
0.0 | 92.0 | 47196 | 0.7952 | 0.3339 | 0.0705 |
0.0 | 93.0 | 47709 | 0.8144 | 0.3341 | 0.0705 |
0.0 | 94.0 | 48222 | 0.8309 | 0.3346 | 0.0707 |
0.0 | 95.0 | 48735 | 0.8456 | 0.3350 | 0.0708 |
0.0 | 96.0 | 49248 | 0.8585 | 0.3346 | 0.0706 |
0.0 | 97.0 | 49761 | 0.8673 | 0.3346 | 0.0706 |
0.0 | 98.0 | 50274 | 0.8743 | 0.3343 | 0.0707 |
0.0 | 99.0 | 50787 | 0.8773 | 0.3341 | 0.0706 |
0.0 | 100.0 | 51300 | 0.8790 | 0.3341 | 0.0706 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 36
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs-lg-10hrs-v4
Base model
facebook/w2v-bert-2.0