Edit model card

atasoglu/turkish-base-bert-uncased-offenseval2020_tr

This is an offensive language detection model fine-tuned with coltekin/offenseval2020_tr dataset on ytu-ce-cosmos/turkish-base-bert-uncased.

Usage

Quick usage:

from transformers import pipeline
pipe = pipeline("text-classification", "atasoglu/turkish-base-bert-uncased-offenseval2020_tr")
print(pipe("bu bir test metnidir.", top_k=None))
# [{'label': 'NOT', 'score': 0.9970345497131348}, {'label': 'OFF', 'score': 0.0029654440004378557}]

Or:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "atasoglu/turkish-base-bert-uncased-offenseval2020_tr"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(device)

@torch.no_grad
def predict(X):
    inputs = tokenizer(X, padding="max_length", truncation=True, max_length=256, return_tensors="pt")
    outputs = model.forward(**inputs.to(device))
    return torch.argmax(outputs.logits, dim=-1).tolist()

print(predict(["bu bir test metnidir."]))
# [0]

Test Results

Test results examined on the test split of fine-tuning dataset.

precision recall f1-score support
NOT 0.9162 0.9559 0.9356 2812
OFF 0.7912 0.6564 0.7176 716
accuracy 0.8951 3528
macro avg 0.8537 0.8062 0.8266 3528
weighted avg 0.8908 0.8951 0.8914 3528
Downloads last month
36
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train atasoglu/turkish-base-bert-uncased-offenseval2020_tr