File size: 4,759 Bytes
b383850
 
 
 
 
 
 
 
 
 
 
 
 
ac1afca
 
b383850
 
 
 
 
 
 
 
 
 
996fb38
 
 
 
 
 
b383850
 
 
 
 
 
 
 
 
 
 
 
7a9ae4a
b383850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a9ae4a
b383850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
996fb38
 
 
 
b383850
 
 
 
 
 
 
 
996fb38
b383850
996fb38
b383850
 
 
 
 
 
 
 
 
996fb38
 
b383850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
996fb38
b383850
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
language:
- tr
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- nli_tr
- emrecan/stsb-mt-turkish
license: mit
library_name: sentence-transformers
base_model: ytu-ce-cosmos/turkish-mini-bert-uncased
---

# turkish-mini-bert-uncased-mean-nli-stsb-tr

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model was adapted from [ytu-ce-cosmos/turkish-mini-bert-uncased](https://huggingface.co/ytu-ce-cosmos/turkish-mini-bert-uncased) and fine-tuned on these datasets:
- [nli_tr](https://huggingface.co/datasets/nli_tr)
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)

:warning: **All texts were manually lowercased,** [as stated](https://huggingface.co/ytu-ce-cosmos/turkish-tiny-bert-uncased#%E2%9A%A0-uncased-use-requires-manual-lowercase-conversion) by the model's authors:

 ```python
text.replace("I", "ı").lower()
```

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:

```txt
Cosine-Similarity :	    Pearson: 0.8117	Spearman: 0.8074
Manhattan-Distance:	    Pearson: 0.8029	Spearman: 0.7972
Euclidean-Distance:	    Pearson: 0.8028	Spearman: 0.7977
Dot-Product-Similarity:	Pearson: 0.7563	Spearman: 0.7435
```


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 45 with parameters:
```
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 4,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 45,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->