Edit model card

turkish-tiny-bert-uncased-mean-nli-stsb-tr

This is a sentence-transformers model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model was adapted from ytu-ce-cosmos/turkish-tiny-bert-uncased and fine-tuned on these datasets:

:warning: All texts were manually lowercased, as stated by the model's authors:

text.replace("I", "ı").lower()

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

model = SentenceTransformer('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

Achieved results on the STS-b test split are given below:

Cosine-Similarity :     Pearson: 0.7515	Spearman: 0.7467
Manhattan-Distance:	    Pearson: 0.7404	Spearman: 0.7299
Euclidean-Distance:	    Pearson: 0.7415	Spearman: 0.7305
Dot-Product-Similarity:	Pearson: 0.6395	Spearman: 0.6140

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 45 with parameters:

{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 574,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 45,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr

Finetuned
(1)
this model

Datasets used to train atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr