Ahmet
commited on
Commit
·
34e72e4
1
Parent(s):
ff1a017
update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,137 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
datasets:
|
11 |
+
- nli_tr
|
12 |
+
- emrecan/stsb-mt-turkish
|
13 |
---
|
14 |
+
|
15 |
+
# turkish-tiny-bert-uncased-mean-nli-stsb-tr
|
16 |
+
|
17 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
+
|
19 |
+
This model was adapted from [ytu-ce-cosmos/turkish-tiny-bert-uncased](https://huggingface.co/ytu-ce-cosmos/turkish-tiny-bert-uncased) and fine-tuned on these datasets:
|
20 |
+
- [nli_tr](https://huggingface.co/datasets/nli_tr)
|
21 |
+
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)
|
22 |
+
|
23 |
+
## Usage (Sentence-Transformers)
|
24 |
+
|
25 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
26 |
+
|
27 |
+
```
|
28 |
+
pip install -U sentence-transformers
|
29 |
+
```
|
30 |
+
|
31 |
+
Then you can use the model like this:
|
32 |
+
|
33 |
+
```python
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
36 |
+
|
37 |
+
model = SentenceTransformer('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')
|
38 |
+
embeddings = model.encode(sentences)
|
39 |
+
print(embeddings)
|
40 |
+
```
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
## Usage (HuggingFace Transformers)
|
45 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, AutoModel
|
49 |
+
import torch
|
50 |
+
|
51 |
+
|
52 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
53 |
+
def mean_pooling(model_output, attention_mask):
|
54 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
55 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
56 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
57 |
+
|
58 |
+
|
59 |
+
# Sentences we want sentence embeddings for
|
60 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
61 |
+
|
62 |
+
# Load model from HuggingFace Hub
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')
|
64 |
+
model = AutoModel.from_pretrained('atasoglu/turkish-tiny-bert-uncased-mean-nli-stsb-tr')
|
65 |
+
|
66 |
+
# Tokenize sentences
|
67 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
68 |
+
|
69 |
+
# Compute token embeddings
|
70 |
+
with torch.no_grad():
|
71 |
+
model_output = model(**encoded_input)
|
72 |
+
|
73 |
+
# Perform pooling. In this case, mean pooling.
|
74 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
75 |
+
|
76 |
+
print("Sentence embeddings:")
|
77 |
+
print(sentence_embeddings)
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
## Evaluation Results
|
83 |
+
|
84 |
+
Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:
|
85 |
+
|
86 |
+
```txt
|
87 |
+
Cosine-Similarity : Pearson: 0.6587 Spearman: 0.6370
|
88 |
+
Manhattan-Distance: Pearson: 0.6293 Spearman: 0.6151
|
89 |
+
Euclidean-Distance: Pearson: 0.6335 Spearman: 0.6186
|
90 |
+
Dot-Product-Similarity: Pearson: 0.5972 Spearman: 0.5756
|
91 |
+
```
|
92 |
+
|
93 |
+
|
94 |
+
## Training
|
95 |
+
The model was trained with the parameters:
|
96 |
+
|
97 |
+
**DataLoader**:
|
98 |
+
|
99 |
+
`torch.utils.data.dataloader.DataLoader` of length 45 with parameters:
|
100 |
+
```
|
101 |
+
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
102 |
+
```
|
103 |
+
|
104 |
+
**Loss**:
|
105 |
+
|
106 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
107 |
+
|
108 |
+
Parameters of the fit()-Method:
|
109 |
+
```
|
110 |
+
{
|
111 |
+
"epochs": 10,
|
112 |
+
"evaluation_steps": 22,
|
113 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
114 |
+
"max_grad_norm": 1,
|
115 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
116 |
+
"optimizer_params": {
|
117 |
+
"lr": 2e-05
|
118 |
+
},
|
119 |
+
"scheduler": "WarmupLinear",
|
120 |
+
"steps_per_epoch": null,
|
121 |
+
"warmup_steps": 45,
|
122 |
+
"weight_decay": 0.01
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
|
127 |
+
## Full Model Architecture
|
128 |
+
```
|
129 |
+
SentenceTransformer(
|
130 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
|
131 |
+
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
## Citing & Authors
|
136 |
+
|
137 |
+
<!--- Describe where people can find more information -->
|