Visualize in Weights & Biases

roberta-base_refusal

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0104
  • Accuracy: 0.9981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0002 0.2776 500 0.0159 0.9975
0.0011 0.5552 1000 0.0372 0.9931
0.0376 0.8329 1500 0.0214 0.9963
0.038 1.1105 2000 0.0147 0.9981
0.0465 1.3881 2500 0.0157 0.9975
0.0495 1.6657 3000 0.0096 0.9988
0.0011 1.9434 3500 0.0136 0.9981
0.0004 2.2210 4000 0.0153 0.9981
0.0007 2.4986 4500 0.0123 0.9981
0.0004 2.7762 5000 0.0362 0.9956
0.044 3.0539 5500 0.0176 0.9975
0.0015 3.3315 6000 0.0142 0.9975
0.0004 3.6091 6500 0.0113 0.9981
0.0004 3.8867 7000 0.0227 0.9956
0.0436 4.1644 7500 0.0129 0.9969
0.0085 4.4420 8000 0.0102 0.9988
0.0003 4.7196 8500 0.0102 0.9988
0.0002 4.9972 9000 0.0104 0.9981

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for atlasshrugg/roberta-base_refusal

Finetuned
(1667)
this model