AraGPT2 Detector

Machine generated detector model from the AraGPT2: Pre-Trained Transformer for Arabic Language Generation paper

This model is trained on the long text passages, and achieves a 99.4% F1-Score.

How to use it:

from transformers import pipeline
from arabert.preprocess import ArabertPreprocessor

processor = ArabertPreprocessor(model="aubmindlab/araelectra-base-discriminator")
pipe = pipeline("sentiment-analysis", model = "aubmindlab/aragpt2-mega-detector-long")

text = " "
text_prep = processor.preprocess(text)
result = pipe(text_prep)
# [{'label': 'machine-generated', 'score': 0.9977743625640869}]

If you used this model please cite us as :

@misc{antoun2020aragpt2,
      title={AraGPT2: Pre-Trained Transformer for Arabic Language Generation},
      author={Wissam Antoun and Fady Baly and Hazem Hajj},
      year={2020},
      eprint={2012.15520},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contacts

Wissam Antoun: Linkedin | Twitter | Github | wfa07@mail.aub.edu | wissam.antoun@gmail.com

Fady Baly: Linkedin | Twitter | Github | fgb06@mail.aub.edu | baly.fady@gmail.com

Downloads last month
11
Safetensors
Model size
135M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using aubmindlab/aragpt2-mega-detector-long 1