|
--- |
|
language: ar |
|
datasets: |
|
- wikipedia |
|
- Osian |
|
- 1.5B-Arabic-Corpus |
|
- oscar-arabic-unshuffled |
|
- Assafir(private) |
|
- Twitter(private) |
|
widget: |
|
- text: " عاصمة لبنان هي [MASK] ." |
|
--- |
|
|
|
|
|
<img src="https://raw.githubusercontent.com/aub-mind/arabert/master/arabert_logo.png" width="100" align="center"/> |
|
|
|
|
|
# AraBERTv0.2-Twitter |
|
|
|
AraBERTv0.2-Twitter-base/large are two new models for Arabic dialects and tweets, trained by continuing the pre-training using the MLM task on ~60M Arabic tweets (filtered from a collection on 100M). |
|
|
|
The two new models have had emojies added to their vocabulary in addition to common words that weren't at first present. The pre-training was done with a max sentence length of 64 only for 1 epoch. |
|
|
|
**AraBERT** is an Arabic pretrained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERT uses the same BERT-Base config. More details are available in the [AraBERT Paper](https://arxiv.org/abs/2003.00104) and in the [AraBERT Meetup](https://github.com/WissamAntoun/pydata_khobar_meetup) |
|
|
|
|
|
## Other Models |
|
|
|
Model | HuggingFace Model Name | Size (MB/Params)| Pre-Segmentation | DataSet (Sentences/Size/nWords) | |
|
---|:---:|:---:|:---:|:---: |
|
AraBERTv0.2-base | [bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) | 543MB / 136M | No | 200M / 77GB / 8.6B | |
|
AraBERTv0.2-large| [bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) | 1.38G / 371M | No | 200M / 77GB / 8.6B | |
|
AraBERTv2-base| [bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) | 543MB / 136M | Yes | 200M / 77GB / 8.6B | |
|
AraBERTv2-large| [bert-large-arabertv2](https://huggingface.co/aubmindlab/bert-large-arabertv2) | 1.38G / 371M | Yes | 200M / 77GB / 8.6B | |
|
AraBERTv0.1-base| [bert-base-arabertv01](https://huggingface.co/aubmindlab/bert-base-arabertv01) | 543MB / 136M | No | 77M / 23GB / 2.7B | |
|
AraBERTv1-base| [bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) | 543MB / 136M | Yes | 77M / 23GB / 2.7B | |
|
AraBERTv0.2-Twitter-base| [bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) | 543MB / 136M | No | Same as v02 + 60M Multi-Dialect Tweets| |
|
AraBERTv0.2-Twitter-large| [bert-large-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-large-arabertv02-twitter) | 1.38G / 371M | No | Same as v02 + 60M Multi-Dialect Tweets| |
|
|
|
|
|
# Preprocessing |
|
|
|
**The model is trained on a sequence length of 64, using max length beyond 64 might result in degraded performance** |
|
|
|
It is recommended to apply our preprocessing function before training/testing on any dataset. |
|
The preprocessor will keep and space out emojis when used with a "twitter" model. |
|
|
|
```python |
|
from arabert.preprocess import ArabertPreprocessor |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
model_name="aubmindlab/bert-base-arabertv02-twitter" |
|
arabert_prep = ArabertPreprocessor(model_name=model_name) |
|
|
|
text = "ولن نبالغ إذا قلنا إن هاتف أو كمبيوتر المكتب في زمننا هذا ضروري" |
|
arabert_prep.preprocess(text) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02-twitter") |
|
model = AutoModelForMaskedLM.from_pretrained("aubmindlab/bert-base-arabertv02-twitter") |
|
``` |
|
|
|
|
|
|
|
# If you used this model please cite us as : |
|
Google Scholar has our Bibtex wrong (missing name), use this instead |
|
``` |
|
@inproceedings{antoun2020arabert, |
|
title={AraBERT: Transformer-based Model for Arabic Language Understanding}, |
|
author={Antoun, Wissam and Baly, Fady and Hajj, Hazem}, |
|
booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020}, |
|
pages={9} |
|
} |
|
``` |
|
# Acknowledgments |
|
Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the [AUB MIND Lab](https://sites.aub.edu.lb/mindlab/) Members for the continuous support. Also thanks to [Yakshof](https://www.yakshof.com/#/) and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT. |
|
|
|
# Contacts |
|
**Wissam Antoun**: [Linkedin](https://www.linkedin.com/in/wissam-antoun-622142b4/) | [Twitter](https://twitter.com/wissam_antoun) | [Github](https://github.com/WissamAntoun) | <wfa07@mail.aub.edu> | <wissam.antoun@gmail.com> |
|
|
|
**Fady Baly**: [Linkedin](https://www.linkedin.com/in/fadybaly/) | [Twitter](https://twitter.com/fadybaly) | [Github](https://github.com/fadybaly) | <fgb06@mail.aub.edu> | <baly.fady@gmail.com> |
|
|