Create agents/uci_tokenizers.py
#1
by
austindavis
- opened
- agents/uci_tokenizers.py +314 -0
agents/uci_tokenizers.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import chess
|
4 |
+
import tiktoken
|
5 |
+
import tokenizers
|
6 |
+
from tokenizers import models, pre_tokenizers, processors
|
7 |
+
from torch import Tensor as TT
|
8 |
+
from transformers import PreTrainedTokenizerFast
|
9 |
+
from transformers.tokenization_utils_fast import BatchEncoding
|
10 |
+
|
11 |
+
|
12 |
+
def getTiktokenizer() -> tiktoken.Encoding:
|
13 |
+
"""
|
14 |
+
Defines a tiktoken-based BPE encoder for UCI chess moves. This
|
15 |
+
tokenizer effectively tokenizes UCI moves by the square names.
|
16 |
+
One notable variation is that promotions must be in upper-case.
|
17 |
+
|
18 |
+
Vocabulary:
|
19 |
+
Special Tokens (4): "\<|pad|\>", "\<|startoftext|\>", "\<|endoftext|\>", "\<|unknown|\>"
|
20 |
+
Square Tokens (64): a1 through h8
|
21 |
+
Promote Tokens (4): Q, B, R, N
|
22 |
+
UNUSED (8120): Need 8192-4-64-4=8120 unused tokens of the form <|unused####|>
|
23 |
+
"""
|
24 |
+
special_tokens = ["<|pad|>", "<|startoftext|>", "<|endoftext|>", "<|unknown|>"]
|
25 |
+
unused_tokens = [f"<|unused{i:04d}" for i in range(8120)]
|
26 |
+
chess_vocab = special_tokens + chess.SQUARE_NAMES + list("QBRN") + unused_tokens
|
27 |
+
mergeable_ranks = {k.encode():v for (v,k) in enumerate(chess_vocab)}
|
28 |
+
chess_pat_str = r'[a-h][1-8]|[QBRN]'
|
29 |
+
|
30 |
+
enc = tiktoken.Encoding(
|
31 |
+
name="chess_enc",
|
32 |
+
pat_str=chess_pat_str, # or \d|\s
|
33 |
+
mergeable_ranks=mergeable_ranks,
|
34 |
+
special_tokens={k:v for (v,k) in enumerate(special_tokens)},
|
35 |
+
)
|
36 |
+
|
37 |
+
return enc
|
38 |
+
|
39 |
+
|
40 |
+
class UciTokenizer(PreTrainedTokenizerFast):
|
41 |
+
_PAD_TOKEN: str
|
42 |
+
_UNK_TOKEN: str
|
43 |
+
_EOS_TOKEN: str
|
44 |
+
_BOS_TOKEN: str
|
45 |
+
|
46 |
+
|
47 |
+
stoi: dict[str, int]
|
48 |
+
"""Integer to String mapping"""
|
49 |
+
|
50 |
+
itos: dict[int, str]
|
51 |
+
"""String to Integer Mapping. This is the vocab"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
stoi,
|
56 |
+
itos,
|
57 |
+
pad_token,
|
58 |
+
unk_token,
|
59 |
+
bos_token,
|
60 |
+
eos_token,
|
61 |
+
name_or_path,
|
62 |
+
**kwargs
|
63 |
+
):
|
64 |
+
self.stoi = stoi
|
65 |
+
self.itos = itos
|
66 |
+
|
67 |
+
self._PAD_TOKEN = pad_token
|
68 |
+
self._UNK_TOKEN = unk_token
|
69 |
+
self._EOS_TOKEN = eos_token
|
70 |
+
self._BOS_TOKEN = bos_token
|
71 |
+
|
72 |
+
# Define the model
|
73 |
+
tok_model = models.WordLevel(vocab=self.stoi, unk_token=self._UNK_TOKEN)
|
74 |
+
|
75 |
+
slow_tokenizer = tokenizers.Tokenizer(tok_model)
|
76 |
+
slow_tokenizer.pre_tokenizer = self._init_pretokenizer()
|
77 |
+
|
78 |
+
# post processing adds special tokens unless explicitly ignored
|
79 |
+
post_proc = processors.TemplateProcessing(
|
80 |
+
single=f"{bos_token} $0",
|
81 |
+
pair=None,
|
82 |
+
special_tokens=[(bos_token, 1)],
|
83 |
+
)
|
84 |
+
slow_tokenizer.post_processor=post_proc
|
85 |
+
|
86 |
+
super().__init__(
|
87 |
+
tokenizer_object=slow_tokenizer,
|
88 |
+
unk_token=self._UNK_TOKEN,
|
89 |
+
bos_token=self._BOS_TOKEN,
|
90 |
+
eos_token=self._EOS_TOKEN,
|
91 |
+
pad_token=self._PAD_TOKEN,
|
92 |
+
name_or_path=name_or_path,
|
93 |
+
**kwargs
|
94 |
+
)
|
95 |
+
|
96 |
+
# Override the decode behavior to ensure spaces are correctly handled
|
97 |
+
def _decode(
|
98 |
+
token_ids: int | List[int] | dict | TT,
|
99 |
+
skip_special_tokens=False,
|
100 |
+
clean_up_tokenization_spaces=False,
|
101 |
+
) -> int | List[int]:
|
102 |
+
|
103 |
+
if isinstance(token_ids, int):
|
104 |
+
return self.itos.get(token_ids, self._UNK_TOKEN)
|
105 |
+
|
106 |
+
if isinstance(token_ids, dict):
|
107 |
+
token_ids = token_ids["input_ids"]
|
108 |
+
|
109 |
+
if isinstance(token_ids, TT):
|
110 |
+
token_ids = token_ids.tolist()
|
111 |
+
|
112 |
+
if isinstance(token_ids, list):
|
113 |
+
tokens_str = [self.itos.get(xi, self._UNK_TOKEN) for xi in token_ids]
|
114 |
+
processed_tokens = self._process_str_tokens(tokens_str)
|
115 |
+
|
116 |
+
return " ".join(processed_tokens)
|
117 |
+
|
118 |
+
raise ValueError(f"Unknown input type to decode() for argument 'token_ids'. Received: {type(token_ids)} ")
|
119 |
+
|
120 |
+
|
121 |
+
self._decode = _decode
|
122 |
+
|
123 |
+
def _init_pretokenizer(self) -> pre_tokenizers.PreTokenizer:
|
124 |
+
raise NotImplementedError
|
125 |
+
|
126 |
+
def _process_str_tokens(self, tokens_str: list[str], return_player_ids: bool) -> list[str]:
|
127 |
+
raise NotImplementedError
|
128 |
+
|
129 |
+
def get_id2square_list() -> list[int]:
|
130 |
+
raise NotImplementedError
|
131 |
+
|
132 |
+
|
133 |
+
class UciTileTokenizer(UciTokenizer):
|
134 |
+
""" Uci tokenizer converting start/end tiles and promotion types each into individual tokens"""
|
135 |
+
|
136 |
+
SPECIAL_TOKENS = ["<|pad|>", "<|startoftext|>", "<|endoftext|>", "<|unknown|>"]
|
137 |
+
|
138 |
+
stoi = {
|
139 |
+
tok: idx
|
140 |
+
for tok, idx in list(
|
141 |
+
zip(SPECIAL_TOKENS + chess.SQUARE_NAMES + list("QRBN"), range(72))
|
142 |
+
)
|
143 |
+
}
|
144 |
+
|
145 |
+
itos = {
|
146 |
+
idx: tok
|
147 |
+
for tok, idx in list(
|
148 |
+
zip(SPECIAL_TOKENS + chess.SQUARE_NAMES + list("QRBN"), range(72))
|
149 |
+
)
|
150 |
+
}
|
151 |
+
|
152 |
+
id2square:List[int] = list(range(4,68))
|
153 |
+
"""
|
154 |
+
List mapping token IDs to squares on the chess board. Order is file then rank, i.e.:
|
155 |
+
`A1, B1, C1, ..., F8, G8, H8`
|
156 |
+
"""
|
157 |
+
|
158 |
+
def get_id2square_list(self) -> List[int]:
|
159 |
+
return self.id2square
|
160 |
+
|
161 |
+
def __init__(self, **kwargs):
|
162 |
+
super().__init__(
|
163 |
+
self.stoi,
|
164 |
+
self.itos,
|
165 |
+
pad_token="<|pad|>",
|
166 |
+
unk_token="<|unknown|>",
|
167 |
+
bos_token="<|startoftext|>",
|
168 |
+
eos_token="<|endoftext|>",
|
169 |
+
name_or_path="austindavis/uci_tile_tokenizer",
|
170 |
+
clean_up_tokenization_spaces=False,
|
171 |
+
**kwargs
|
172 |
+
)
|
173 |
+
|
174 |
+
def _init_pretokenizer(self):
|
175 |
+
# Pre-tokenizer to split input into UCI moves
|
176 |
+
pattern = tokenizers.Regex(r"\d|[QBRN]")
|
177 |
+
pre_tokenizer = pre_tokenizers.Sequence(
|
178 |
+
[
|
179 |
+
pre_tokenizers.Whitespace(),
|
180 |
+
pre_tokenizers.Split(pattern=pattern, behavior="merged_with_previous"),
|
181 |
+
]
|
182 |
+
)
|
183 |
+
return pre_tokenizer
|
184 |
+
|
185 |
+
def _process_str_tokens(self, token_str: list[str]):
|
186 |
+
moves = []
|
187 |
+
next_move = ""
|
188 |
+
for token in token_str:
|
189 |
+
|
190 |
+
# skip special tokens
|
191 |
+
if token in self.all_special_tokens:
|
192 |
+
continue
|
193 |
+
|
194 |
+
# handle promotions
|
195 |
+
if len(token) == 1:
|
196 |
+
next_move += token
|
197 |
+
continue
|
198 |
+
|
199 |
+
# handle regular tokens if there's room
|
200 |
+
if len(next_move) < 4:
|
201 |
+
next_move += token
|
202 |
+
continue
|
203 |
+
|
204 |
+
moves.append(next_move)
|
205 |
+
next_move = token
|
206 |
+
|
207 |
+
moves.append(next_move)
|
208 |
+
return moves
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def compute_players(encoding: BatchEncoding, according_to='output'):
|
212 |
+
"""
|
213 |
+
Determines which player (white=True, black=False) is associated with each token in the sequence.
|
214 |
+
This method works based on chess move sequences tokenized using the UciTileTokenizer.
|
215 |
+
|
216 |
+
# Parameters:
|
217 |
+
----------
|
218 |
+
**`encoding`** : BatchEncoding
|
219 |
+
Tokenized input of a chess game, where each token represents a move or special token.
|
220 |
+
|
221 |
+
**`according_to`** : str (optional, default='output')
|
222 |
+
Specifies the perspective for associating players:
|
223 |
+
- 'output': Returns the player whose next move is predicted by the sequence (the output move).
|
224 |
+
- Otherwise: Returns the player associated with the input tokens (i.e., which player made each move).
|
225 |
+
|
226 |
+
# Returns:
|
227 |
+
-------
|
228 |
+
List[bool]
|
229 |
+
A list of boolean values indicating the player for each token:
|
230 |
+
- True for white (player 1),
|
231 |
+
- False for black (player 2).
|
232 |
+
|
233 |
+
The list length corresponds to the number of tokens in the sequence, including special tokens if any.
|
234 |
+
|
235 |
+
# Example Usage:
|
236 |
+
```
|
237 |
+
>>> tok = UciTileTokenizer()
|
238 |
+
>>> encoding = tok('e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q')
|
239 |
+
>>> print(encoding['input_ids'])
|
240 |
+
[1, 16, 32, 55, 39, 32, 39, 56, 48, 39, 48, 63, 42, 48, 56, 42, 49, 56, 65, 68]
|
241 |
+
>>> tok.compute_players(encoding)
|
242 |
+
[True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True, False]
|
243 |
+
>>> tok.compute_players(encoding, according_to='input')
|
244 |
+
[True, True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True]
|
245 |
+
```
|
246 |
+
|
247 |
+
# Notes:
|
248 |
+
-------
|
249 |
+
This method does not rely on board position calculations. Therefore, when
|
250 |
+
using `according_to='output'`, it cannot reliably predict which player is
|
251 |
+
responsible for selecting the final token of the sequence. For instance,
|
252 |
+
if a pawn is moved to the back rank (e.g., 'e7e8'), then white must select
|
253 |
+
the promotion class on the next token; however, this algorithm will predict
|
254 |
+
that black is responsible for selecting the next token instead of white.
|
255 |
+
"""
|
256 |
+
|
257 |
+
return [UciTileTokenizer._compute_players_single(encoding[i].ids) for i in range(len(encoding['input_ids']))]
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
@staticmethod
|
262 |
+
def _compute_players_single(input_ids: list[int], according_to: str='output'):
|
263 |
+
players = [] if according_to == "output" else [True]
|
264 |
+
current_player = False
|
265 |
+
num_tokens_in_ply = 0
|
266 |
+
has_specials = False
|
267 |
+
|
268 |
+
for i, token_id in enumerate(input_ids):
|
269 |
+
if token_id == 1:
|
270 |
+
has_specials = True
|
271 |
+
continue
|
272 |
+
|
273 |
+
if num_tokens_in_ply == 0:
|
274 |
+
# check if promotion OR unknown token ID
|
275 |
+
if token_id > 67 or token_id == 3:
|
276 |
+
players.append(current_player)
|
277 |
+
num_tokens_in_ply = 0
|
278 |
+
else:
|
279 |
+
num_tokens_in_ply += 1
|
280 |
+
current_player = not current_player
|
281 |
+
players.append(current_player)
|
282 |
+
elif num_tokens_in_ply == 1:
|
283 |
+
num_tokens_in_ply = 0
|
284 |
+
players.append(current_player)
|
285 |
+
else:
|
286 |
+
raise ValueError("Illegal move sequence")
|
287 |
+
|
288 |
+
if according_to == "output":
|
289 |
+
# anticipate what output should be based on the final input token
|
290 |
+
# see notes for more detail
|
291 |
+
if num_tokens_in_ply == 0:
|
292 |
+
if token_id > 67:
|
293 |
+
players.append(not current_player)
|
294 |
+
else:
|
295 |
+
players.append(current_player)
|
296 |
+
else:
|
297 |
+
players.append(current_player)
|
298 |
+
|
299 |
+
return players if has_specials else players[1:]
|
300 |
+
|
301 |
+
if __name__ == "__main__":
|
302 |
+
tok = UciTileTokenizer()
|
303 |
+
encoding = tok('e2e4Q b7b8N e2e7 a1',add_special_tokens=True)
|
304 |
+
print(f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}")
|
305 |
+
print(f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}")
|
306 |
+
|
307 |
+
encoding = tok('e2e4Q b7b8N e2e7 a1',add_special_tokens=False)
|
308 |
+
print(f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}")
|
309 |
+
print(f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}")
|
310 |
+
|
311 |
+
encoding = tok('e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q')
|
312 |
+
print(encoding['input_ids'])
|
313 |
+
print(tok.compute_players(encoding))
|
314 |
+
print(tok.compute_players(encoding, according_to='input'))
|