GRAG-EMBEDDING-MODELS
Collection
These Models are trained on avemio/GRAG-EMBEDDING-TRIPLES-HESSIAN-AI with roughly 300k Triple-Samples.
•
5 items
•
Updated
This is a sentence-transformers model trained on this Dataset with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
TASK | UAE | GRAG-UAE | Merged-UAE | GRAG vs. UAE | Merged vs. UAE |
---|---|---|---|---|---|
AmazonCounterfactualClassification | 0.5650 | 0.5449 | 0.5401 | -2.01% | -2.48% |
AmazonReviewsClassification | 0.2738 | 0.2745 | 0.2782 | 0.08% | 0.44% |
FalseFriendsGermanEnglish | 0.4808 | 0.4777 | 0.4703 | -0.32% | -1.05% |
GermanQuAD-Retrieval | 0.7811 | 0.8353 | 0.8628 | 5.42% | 8.18% |
GermanSTSBenchmark | 0.6421 | 0.6568 | 0.6754 | 1.47% | 3.33% |
MassiveIntentClassification | 0.5139 | 0.4884 | 0.4714 | -2.55% | -4.25% |
MassiveScenarioClassification | 0.6062 | 0.5837 | 0.6111 | -2.25% | 0.49% |
GermanDPR | 0.6750 | 0.7210 | 0.7507 | 4.60% | 7.57% |
MTOPDomainClassification | 0.7625 | 0.7450 | 0.7686 | -1.75% | 0.61% |
MTOPIntentClassification | 0.4994 | 0.4516 | 0.4413 | -4.77% | -5.80% |
PawsXPairClassification | 0.5452 | 0.5077 | 0.5162 | -3.76% | -2.90% |
Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array. See Eval-Dataset and Evaluation Code here
Model Name | Accuracy |
---|---|
bge-m3 | 0.8806 |
UAE-Large-V1 | 0.8393 |
GRAG-BGE-M3-TRIPLES-HESSIAN-AI | 0.8857 |
GRAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI | 0.8866 |
GRAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI | 0.8866 |
GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI | 0.8763 |
GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI | 0.8771 |
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}