metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9366815846179347
- name: Recall
type: recall
value: 0.9510265903736116
- name: F1
type: f1
value: 0.9437995824634655
- name: Accuracy
type: accuracy
value: 0.9859009831047272
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0774
- Precision: 0.9367
- Recall: 0.9510
- F1: 0.9438
- Accuracy: 0.9859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0866 | 1.0 | 1756 | 0.0715 | 0.9181 | 0.9357 | 0.9268 | 0.9818 |
0.0354 | 2.0 | 3512 | 0.0710 | 0.9288 | 0.9487 | 0.9386 | 0.9850 |
0.0191 | 3.0 | 5268 | 0.0681 | 0.9337 | 0.9477 | 0.9406 | 0.9857 |
0.0139 | 4.0 | 7024 | 0.0694 | 0.9342 | 0.9514 | 0.9427 | 0.9856 |
0.008 | 5.0 | 8780 | 0.0774 | 0.9367 | 0.9510 | 0.9438 | 0.9859 |
Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2