Edit model card

FLANG-ELECTRA_flang-bert

This model is a fine-tuned version of SALT-NLP/FLANG-ELECTRA on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5930
  • Accuracy: 0.8705
  • F1: 0.8717
  • Precision: 0.8772
  • Recall: 0.8705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6377 1.0 181 0.5174 0.8003 0.7860 0.8080 0.8003
0.4035 2.0 362 0.4221 0.8580 0.8578 0.8611 0.8580
0.2395 3.0 543 0.4535 0.8580 0.8560 0.8592 0.8580
0.231 4.0 724 0.4335 0.8658 0.8657 0.8659 0.8658
0.3369 5.0 905 0.5608 0.8081 0.8057 0.8151 0.8081
0.2203 6.0 1086 0.5002 0.8705 0.8691 0.8706 0.8705
0.239 7.0 1267 0.6676 0.8128 0.8125 0.8338 0.8128
0.0938 8.0 1448 0.5930 0.8705 0.8717 0.8772 0.8705
0.1329 9.0 1629 0.5017 0.8580 0.8571 0.8572 0.8580
0.3598 10.0 1810 0.5126 0.8690 0.8675 0.8698 0.8690
0.1615 11.0 1991 0.5945 0.8612 0.8605 0.8606 0.8612
0.0923 12.0 2172 0.8213 0.8268 0.8292 0.8450 0.8268
0.1296 13.0 2353 0.8647 0.8580 0.8586 0.8611 0.8580

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1
Downloads last month
5
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avinasht/FLANG-ELECTRA_flang-bert

Finetuned
(4)
this model