Edit model card

finbert_bert-base-uncased

This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8116
  • Accuracy: 0.8752
  • F1: 0.8758
  • Precision: 0.8778
  • Recall: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8465 1.0 91 0.7610 0.6817 0.6643 0.6806 0.6817
0.5154 2.0 182 0.4672 0.8066 0.8082 0.8203 0.8066
0.331 3.0 273 0.4259 0.8393 0.8396 0.8407 0.8393
0.2461 4.0 364 0.5386 0.8315 0.8311 0.8405 0.8315
0.163 5.0 455 0.5392 0.8518 0.8496 0.8554 0.8518
0.1193 6.0 546 0.5441 0.8565 0.8559 0.8590 0.8565
0.0935 7.0 637 0.6496 0.8253 0.8218 0.8306 0.8253
0.0536 8.0 728 0.5461 0.8612 0.8609 0.8609 0.8612
0.0809 9.0 819 0.6680 0.8362 0.8350 0.8394 0.8362
0.0986 10.0 910 0.6303 0.8596 0.8597 0.8645 0.8596
0.0765 11.0 1001 0.7653 0.8300 0.8310 0.8511 0.8300
0.0507 12.0 1092 0.5176 0.8690 0.8691 0.8701 0.8690
0.0633 13.0 1183 0.9141 0.8268 0.8261 0.8370 0.8268
0.0529 14.0 1274 0.7537 0.8549 0.8552 0.8621 0.8549
0.0418 15.0 1365 0.9200 0.8346 0.8342 0.8441 0.8346
0.0151 16.0 1456 0.8578 0.8565 0.8549 0.8622 0.8565
0.0154 17.0 1547 0.8116 0.8752 0.8758 0.8778 0.8752
0.0054 18.0 1638 0.8926 0.8736 0.8733 0.8751 0.8736
0.0259 19.0 1729 0.9026 0.8705 0.8705 0.8709 0.8705
0.0036 20.0 1820 0.9616 0.8721 0.8713 0.8716 0.8721
0.0012 21.0 1911 0.9985 0.8658 0.8656 0.8655 0.8658
0.002 22.0 2002 0.9833 0.8690 0.8689 0.8688 0.8690

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avinasht/finbert_bert-base-uncased

Base model

ProsusAI/finbert
Finetuned
(24)
this model