|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: libCap_prBERTbfd_clf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# libCap_prBERTbfd_clf |
|
|
|
This model is a fine-tuned version of [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5197 |
|
- Accuracy: 0.7457 |
|
- F1: 0.7940 |
|
- Precision: 0.7567 |
|
- Recall: 0.8352 |
|
- Auroc: 0.7268 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 4096 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| |
|
| No log | 0.98 | 34 | 0.6393 | 0.6396 | 0.7053 | 0.6782 | 0.7345 | 0.6197 | |
|
| No log | 1.98 | 68 | 0.5713 | 0.6962 | 0.7499 | 0.7256 | 0.7759 | 0.6795 | |
|
| No log | 2.98 | 102 | 0.5652 | 0.7126 | 0.7388 | 0.7918 | 0.6924 | 0.7168 | |
|
| No log | 3.98 | 136 | 0.5360 | 0.7330 | 0.7896 | 0.7345 | 0.8536 | 0.7076 | |
|
| No log | 4.98 | 170 | 0.5223 | 0.7423 | 0.7830 | 0.7740 | 0.7921 | 0.7318 | |
|
| No log | 5.98 | 204 | 0.5180 | 0.7454 | 0.7882 | 0.7699 | 0.8075 | 0.7323 | |
|
| No log | 6.98 | 238 | 0.5179 | 0.7440 | 0.7934 | 0.7537 | 0.8376 | 0.7243 | |
|
| No log | 7.98 | 272 | 0.5197 | 0.7457 | 0.7940 | 0.7567 | 0.8352 | 0.7268 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|