|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This is the baseline model for the news source classification project. |
|
|
|
Please run the following evaluation pipeline code: |
|
|
|
# START # |
|
## Imports |
|
<pre>from huggingface_hub import hf_hub_download |
|
import joblib |
|
!huggingface-cli login |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
import torchvision |
|
from torchvision import transforms, utils |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from skimage import io, transform |
|
from torchvision.io import read_image |
|
from torch.utils.data import Dataset, DataLoader |
|
from sklearn.metrics import accuracy_score |
|
import numpy as np |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import nltk |
|
from nltk.corpus import stopwords |
|
nltk.download('stopwords') |
|
nltk.download('wordnet') |
|
|
|
import re |
|
from transformers import DistilBertTokenizer, DistilBertModel</pre> |
|
|
|
|
|
# Load model from Huggingface (Please load test data into test_df below) |
|
<pre>repo_id='awngsz/nn_model' |
|
filename='nn_model_v3.joblib' |
|
|
|
model_file_path=hf_hub_download(repo_id=repo_id, filename=filename) <br> |
|
model=joblib.load(model_file_path) |
|
print(model) |
|
|
|
#Load test dataset (assuming the name is the same as the one in the Ed post) <br> |
|
test_df = pd.read_csv(file_path) |
|
|
|
#Copying the naming convention from the sample dataset in the edpost <br> |
|
X_test = test_df['title'] |
|
y_test = test_df['labels'] </pre> |
|
|
|
# Clean the data |
|
|
|
<pre> |
|
def clean_headlines(df, column_name): |
|
""" |
|
Cleans a specified column in a DataFrame by: |
|
- Removing HTML tags |
|
- Removing <script> elements |
|
- Removing extra spaces, trailing/leading whitespaces |
|
- Removing special characters |
|
- Removing repeating special characters |
|
- Removing tabs |
|
- Removing newline characters |
|
- Removing specific punctuation: periods, commas, and parentheses |
|
- Normalizing double quotes ("") to single quotes ('') |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame containing the column to clean |
|
column_name (str): The name of the column to clean |
|
|
|
Returns: |
|
pd.DataFrame: A DataFrame with the cleaned column |
|
""" |
|
# Remove HTML tags |
|
df[column_name] = df[column_name].str.replace(r'<[^<]+?>', '', regex=True) |
|
|
|
# Remove scripts |
|
df[column_name] = df[column_name].str.replace(r'<script.*?</script>', '', regex=True) |
|
|
|
# Remove special characters |
|
df[column_name] = df[column_name].str.strip().str.replace(r'[&*|~`^=_+{}[\]<>\\]', ' ', regex=True) |
|
|
|
# Remove repeating special characters |
|
df[column_name] = df[column_name].str.strip().str.replace(r'([?!])\1+', r'\1', regex=True) |
|
|
|
# Remove tabs |
|
df[column_name] = df[column_name].str.replace(r'\t', ' ', regex=True) |
|
|
|
# Remove newline characters |
|
df[column_name] = df[column_name].str.replace(r'\n', ' ', regex=True) |
|
|
|
# Normalize all references to US as u.s. |
|
df[column_name] = df[column_name].str.replace(r'US', 'u.s.', regex=True) |
|
df[column_name] = df[column_name].str.replace(r'UN', 'u.n.', regex=True) |
|
|
|
# Remove extra spaces including leading/trailing whitespaces |
|
df[column_name] = df[column_name].str.strip().str.replace(r'\s+', ' ', regex=True) |
|
|
|
# get rid of these fox news patterns we see |
|
df[column_name] = df[column_name].str.replace(r'fox news poll:', '', regex=True) |
|
|
|
df[column_name] = df[column_name].str.replace(r'| fox news', '', regex=True) |
|
|
|
df[column_name] = df[column_name].str.replace(r'Fox News', '', regex=True) |
|
df[column_name] = df[column_name].str.replace(r'fox news', '', regex=True) |
|
|
|
df[column_name] = df[column_name].str.replace(r'news poll:', '', regex=True) |
|
|
|
df[column_name] = df[column_name].str.replace(r'opinion:', '', regex=True) |
|
|
|
df[column_name] = df[column_name].str.replace(r"reporter's notebook", '', regex=True) |
|
|
|
# Normalize double quotes to single quotes |
|
# df[column_name] = df[column_name].str.replace(r'"', "'", regex=True) |
|
|
|
# Punctuation |
|
# df[column_name] = df[column_name].str.replace(r'[.,()]', '', regex=True) |
|
|
|
return df </pre> |
|
|
|
<pre> |
|
def normalize_headlines(df, column_name): |
|
""" |
|
Normalizes a given headline by: |
|
- converting it to lowercase |
|
- removing stopwords |
|
- applying stemming or lemmatization to reduce words to their base forms |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame containing the column to clean |
|
column_name (str): The name of the column to clean |
|
|
|
Returns: |
|
pd.DataFrame: A DataFrame with the cleaned column |
|
""" |
|
|
|
# Convert headlines to lowercase |
|
df[column_name] = df[column_name].str.lower() |
|
|
|
# Remove stopwords from headline |
|
stop_words = set(stopwords.words('english')) |
|
df[column_name] = df[column_name].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)])) |
|
|
|
# Lemmatize words to base form |
|
lemmatizer = nltk.stem.WordNetLemmatizer() |
|
df[column_name] = df[column_name].apply(lambda x: ' '.join([lemmatizer.lemmatize(word) for word in x.split()])) |
|
|
|
return df </pre> |
|
|
|
<pre> |
|
def handle_missing_data(df, column_name): |
|
""" |
|
Handles missing or incomplete data in a given column of a DataFrame, including: |
|
|
|
- Replacing NULL values with "Unknown Headline" |
|
- Augmenting the data by creating headlines with synonyms of words in other headlines |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame containing the column to clean |
|
column_name (str): The name of the column to clean |
|
|
|
Returns: |
|
pd.DataFrame: A DataFrame with the cleaned column |
|
""" |
|
|
|
# Remove NULL headlines |
|
df = df.dropna(subset=[column_name]) |
|
|
|
# Set a minimum word count threshold |
|
min_word_count = 3 |
|
|
|
# Filter out titles with fewer words |
|
df = df[df[column_name].str.split().apply(len) >= min_word_count].reset_index(drop=True) |
|
|
|
|
|
return df </pre> |
|
|
|
<pre> |
|
def consistency_checks(df, column_name): |
|
""" |
|
Ensures all headlines follow a consistent format by: |
|
- Removing duplicate headlines |
|
|
|
Args: |
|
df (pd.DataFrame): The DataFrame containing the column to clean |
|
column_name (str): The name of the column to clean |
|
|
|
Returns: |
|
pd.DataFrame: A DataFrame with the cleaned column |
|
|
|
""" |
|
|
|
# Remove duplicate headlines |
|
df = df.drop_duplicates(subset=[column_name]) |
|
|
|
# Filter headlines with too few or too many words |
|
#df = df[df['title'].str.split().apply(len).between(3, 20)] |
|
|
|
|
|
return df </pre> |
|
|
|
<pre> |
|
X_test = clean_headlines(X_test, 'title') |
|
X_test = normalize_headlines(X_test, 'title') |
|
X_test = X_test.dropna(subset = ['title']) |
|
X_test = handle_missing_data(X_test, 'title') |
|
X_test = consistency_checks(X_test, 'title') </pre> |
|
|
|
# Load the embedding model from Huggingface. Transformer: DistilBERT |
|
|
|
|
|
<pre> |
|
def get_embeddings(text_all, tokenizer, model, device, max_len=128): |
|
''' |
|
Generate embeddings using a transformer model on GPU if available. |
|
Args: |
|
- text_all: List of input texts |
|
- tokenizer: Tokenizer for the model |
|
- model: Transformer model |
|
- device: torch.device to run the computations |
|
- max_len: Maximum token length for the input |
|
Returns: |
|
- embeddings: List of embeddings for each input text |
|
''' |
|
embeddings = [] |
|
|
|
count = 0 |
|
print('Start embeddings:') |
|
|
|
for text in text_all: |
|
count += 1 |
|
if count % (len(text_all) // 10) == 0: |
|
print(f'{count / len(text_all) * 100:.1f}% done ...') |
|
|
|
# Tokenize the input text |
|
model_input_token = tokenizer( |
|
text, |
|
add_special_tokens=True, |
|
max_length=max_len, |
|
padding='max_length', |
|
truncation=True, |
|
return_tensors='pt' |
|
).to(device) # Move input tensors to GPU |
|
|
|
# Generate embeddings without gradient computation |
|
with torch.no_grad(): |
|
model_output = model(**model_input_token) |
|
cls_embedding = model_output.last_hidden_state[:, 0, :] # Use CLS token embedding |
|
cls_embedding = cls_embedding.squeeze().cpu().numpy() # Move back to CPU for numpy |
|
embeddings.append(cls_embedding) |
|
|
|
return embeddings </pre> |
|
|
|
|
|
# Check for GPU availability |
|
<pre> |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
print(f'Using device: {device}') |
|
|
|
# Load the tokenizer and model for 'all-mpnet-base-v2' |
|
print("Loading model and tokenizer...") |
|
# Load model and tokenizer |
|
tokenizer_news = AutoTokenizer.from_pretrained('distilbert-base-uncased') |
|
model_news = AutoModel.from_pretrained('distilbert-base-uncased').to(device) |
|
|
|
# Set the model to evaluation mode |
|
model_news.eval() |
|
|
|
############################################# DBERT UNCASED Embedding ############################################# |
|
############################################# Embedding ############################################# |
|
print("Computing DBERT embeddings for training data...") |
|
|
|
y_test = X_test['labels'] |
|
X_test = X_test['title'] |
|
|
|
X_test_embeddings_DBERT = get_embeddings(X_test, tokenizer_news, model_news, device, max_len=128) |
|
print("DBERT embeddings for training data computed!") |
|
|
|
|
|
prediction = model.predict(X_test_embeddings_DBERT) |
|
</pre> |
|
# Accuracy |
|
<pre>label_map = {'NBC': 0, 'FoxNews': 1} |
|
|
|
def compute_category_accuracy(y_true, y_pred, label): |
|
y_true = np.array(y_true) |
|
n_correct = np.sum((y_true == label) & (y_pred == label)) |
|
n_total = np.sum(y_true == label) |
|
cat_accuracy = n_correct / n_total |
|
return cat_accuracy |
|
|
|
#Print accuracy |
|
print(f'Test accuracy: {accuracy_score(y_test, prediction) * 100:.2f}%') |
|
print(f'Test accuracy for NBC: {compute_category_accuracy(y_test, prediction, label_map["NBC"]) * 100:.2f}%') |
|
print(f'Test accuracy for FoxNews: {compute_category_accuracy(y_test, prediction, label_map["FoxNews"]) * 100:.2f}%') |
|
</pre> |
|
|
|
|
|
|
|
|
|
|
|
|
|
<!-- from huggingface_hub import hf_hub_download |
|
import joblib |
|
|
|
#Load model from Huggingface |
|
repo_id='awngsz/baseline_model' |
|
filename='CIS5190_Proj2_AWNGSZ.joblib' |
|
|
|
file_path=hf_hub_download(repo_id=repo_id, filename=filename) |
|
model=joblib.load(file_path) |
|
|
|
print(model) |
|
|
|
#Load test dataset (assuming the name is the same as the one in the Ed post) |
|
test_df = pd.read_csv(file_path) |
|
|
|
#Copying the naming convention from the sample dataset in the edpost |
|
X_test = test_df['title'] |
|
y_test = test_df['labels'] |
|
|
|
#Load the embedding model from Huggingface |
|
############################################# Transformer: DistilBERT ############################################# |
|
from transformers import DistilBertTokenizer, DistilBertModel |
|
# pytorch related packages |
|
import torch |
|
import torchvision |
|
from torchvision import transforms, utils |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from skimage import io, transform |
|
from torchvision.io import read_image |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
def get_embeddings(text_all, tokenizer, model, max_len = 128): |
|
''' |
|
return: embeddings list |
|
''' |
|
embeddings = [] |
|
count = 0 |
|
print('Start embeddings:') |
|
for text in text_all: |
|
count += 1 |
|
if count % (len(text_all) // 10) == 0: |
|
print(f'{count / len(text_all) * 100:.1f}% done ...') |
|
|
|
model_input_token = tokenizer( |
|
text, |
|
add_special_tokens = True, |
|
max_length = max_len, |
|
padding = 'max_length', |
|
truncation = True, |
|
return_tensors = 'pt' |
|
) |
|
|
|
with torch.no_grad(): |
|
model_output = model(**model_input_token) |
|
cls_embedding = model_output.last_hidden_state[:, 0, :] |
|
cls_embedding = cls_embedding.squeeze().numpy() |
|
embeddings.append(cls_embedding) |
|
|
|
return embeddings |
|
|
|
#Load the tokenizer and model from Hugging Face |
|
tokenizer_DBERT = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') |
|
transformer_model_DBERT = DistilBertModel.from_pretrained('distilbert-base-uncased') |
|
|
|
#Set the model to evaluation mode |
|
transformer_model_DBERT.eval() |
|
|
|
#Get the embeddings for the test data |
|
|
|
max_len = max(len(text) for text in X_test) |
|
|
|
#this may take awhile to run |
|
X_test_embeddings_DBERT = get_embeddings(X_test, tokenizer_DBERT, transformer_model_DBERT, max_len = max_len) |
|
|
|
prediction = model.predict(X_test_embeddings_DBERT) |
|
|
|
#Accuracy |
|
from sklearn.metrics import accuracy_score |
|
|
|
label_map = {'NBC': 1, 'FoxNews': 0} |
|
|
|
def compute_category_accuracy(y_true, y_pred, label): |
|
n_correct = np.sum((y_true == label) & (y_pred == label)) |
|
n_total = np.sum(y_true == label) |
|
cat_accuracy = n_correct / n_total |
|
return cat_accuracy |
|
|
|
#Print accuracy |
|
print(f'Test accuracy: {accuracy_score(y_test, prediction) * 100:.2f}%') |
|
print(f'Test accuracy for NBC: {compute_category_accuracy(y_test, prediction, label_map["NBC"]) * 100:.2f}%') |
|
print(f'Test accuracy for FoxNews: {compute_category_accuracy(y_test, prediction, label_map["FoxNews"]) * 100:.2f}%') --> |
|
|
|
##### END ###### |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Dataset Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |