roberta-base-indonesian-1.5G-sentiment-analysis-smsa
This model is a fine-tuned version of cahya/roberta-base-indonesian-1.5G on the indonlu dataset. It achieves the following results on the evaluation set:
- Loss: 0.4294
- Accuracy: 0.9262
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6461 | 1.0 | 688 | 0.2620 | 0.9087 |
0.2627 | 2.0 | 1376 | 0.2291 | 0.9151 |
0.1784 | 3.0 | 2064 | 0.2891 | 0.9167 |
0.1099 | 4.0 | 2752 | 0.3317 | 0.9230 |
0.0857 | 5.0 | 3440 | 0.4294 | 0.9262 |
0.0346 | 6.0 | 4128 | 0.4759 | 0.9246 |
0.0221 | 7.0 | 4816 | 0.4946 | 0.9206 |
0.006 | 8.0 | 5504 | 0.5823 | 0.9175 |
0.0047 | 9.0 | 6192 | 0.5777 | 0.9159 |
0.004 | 10.0 | 6880 | 0.5800 | 0.9175 |
How to use this model in Transformers Library
from transformers import pipeline
pipe = pipeline(
"text-classification",
model="ayameRushia/roberta-base-indonesian-1.5G-sentiment-analysis-smsa"
)
pipe("Terima kasih atas bantuannya ya!")
Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 88
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.