metadata
language:
- el
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- robust-speech-event
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-el
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: el
metrics:
- name: Test WER using LM
type: wer
value: 20.9
- name: Test CER using LM
type: cer
value: 6.0466
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set:
- Loss: 0.3218
- Wer: 0.3095
Training and evaluation data
Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb"
Test WER without LM wer = 31.1294 % cer = 7.9509 %
Test WER using LM wer = 20.7340 % cer = 6.0466 %
How to use eval.py
huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
!python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test
# running without LM
!python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test --greedy
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 80.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.3683 | 8.77 | 500 | 3.1280 | 1.0 |
1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 |
0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 |
0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 |
0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 |
0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 |
0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 |
0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 |
0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0