6_e_200-tiny_tobacco3482
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5797
- Accuracy: 0.68
- Brier Loss: 0.4846
- Nll: 2.7977
- F1 Micro: 0.68
- F1 Macro: 0.6624
- Ece: 0.2589
- Aurc: 0.2179
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.6199 | 0.545 | 0.5837 | 2.2367 | 0.545 | 0.4488 | 0.2385 | 0.2462 |
No log | 2.0 | 50 | 0.4278 | 0.72 | 0.4443 | 1.6749 | 0.72 | 0.7298 | 0.3095 | 0.1339 |
No log | 3.0 | 75 | 0.6756 | 0.625 | 0.4913 | 2.4923 | 0.625 | 0.5751 | 0.2278 | 0.1729 |
No log | 4.0 | 100 | 0.6851 | 0.615 | 0.5031 | 2.5374 | 0.615 | 0.5988 | 0.2487 | 0.1568 |
No log | 5.0 | 125 | 0.5550 | 0.69 | 0.4473 | 1.6315 | 0.69 | 0.6549 | 0.2726 | 0.1697 |
No log | 6.0 | 150 | 0.4135 | 0.79 | 0.3326 | 1.3743 | 0.79 | 0.7851 | 0.2019 | 0.0767 |
No log | 7.0 | 175 | 0.4111 | 0.77 | 0.3527 | 1.6472 | 0.7700 | 0.7388 | 0.1917 | 0.0849 |
No log | 8.0 | 200 | 0.4809 | 0.745 | 0.3805 | 2.1093 | 0.745 | 0.7260 | 0.2375 | 0.0818 |
No log | 9.0 | 225 | 0.6527 | 0.65 | 0.4651 | 2.5269 | 0.65 | 0.6271 | 0.2237 | 0.1333 |
No log | 10.0 | 250 | 0.5215 | 0.715 | 0.4203 | 1.7818 | 0.715 | 0.6875 | 0.2155 | 0.1328 |
No log | 11.0 | 275 | 0.5673 | 0.64 | 0.4965 | 2.1840 | 0.64 | 0.5458 | 0.2547 | 0.1750 |
No log | 12.0 | 300 | 0.4713 | 0.75 | 0.3879 | 2.0629 | 0.75 | 0.7397 | 0.2143 | 0.1262 |
No log | 13.0 | 325 | 0.5793 | 0.655 | 0.4791 | 2.6089 | 0.655 | 0.6206 | 0.2461 | 0.1870 |
No log | 14.0 | 350 | 0.6098 | 0.685 | 0.4375 | 2.0773 | 0.685 | 0.6802 | 0.2415 | 0.1480 |
No log | 15.0 | 375 | 0.5338 | 0.65 | 0.4777 | 2.1062 | 0.65 | 0.6267 | 0.2486 | 0.1577 |
No log | 16.0 | 400 | 0.6278 | 0.675 | 0.4482 | 2.3275 | 0.675 | 0.6822 | 0.2425 | 0.1606 |
No log | 17.0 | 425 | 0.5165 | 0.69 | 0.4524 | 2.1670 | 0.69 | 0.6661 | 0.2650 | 0.1554 |
No log | 18.0 | 450 | 0.6064 | 0.64 | 0.4978 | 2.5380 | 0.64 | 0.5838 | 0.2508 | 0.1850 |
No log | 19.0 | 475 | 0.6753 | 0.645 | 0.5125 | 2.4190 | 0.645 | 0.5875 | 0.2664 | 0.2124 |
0.3785 | 20.0 | 500 | 0.6946 | 0.65 | 0.5331 | 3.1366 | 0.65 | 0.6336 | 0.2715 | 0.2605 |
0.3785 | 21.0 | 525 | 0.5328 | 0.695 | 0.4699 | 2.8365 | 0.695 | 0.6863 | 0.2500 | 0.1660 |
0.3785 | 22.0 | 550 | 0.6684 | 0.62 | 0.5374 | 3.2087 | 0.62 | 0.6071 | 0.2363 | 0.2429 |
0.3785 | 23.0 | 575 | 0.7235 | 0.615 | 0.5613 | 3.4750 | 0.615 | 0.5866 | 0.2748 | 0.2185 |
0.3785 | 24.0 | 600 | 0.6748 | 0.67 | 0.5028 | 3.0615 | 0.67 | 0.6185 | 0.2697 | 0.2251 |
0.3785 | 25.0 | 625 | 0.6778 | 0.645 | 0.5068 | 2.7608 | 0.645 | 0.6235 | 0.2442 | 0.1589 |
0.3785 | 26.0 | 650 | 0.7163 | 0.6 | 0.5690 | 2.7443 | 0.6 | 0.5766 | 0.2655 | 0.2821 |
0.3785 | 27.0 | 675 | 0.7571 | 0.635 | 0.5278 | 3.3670 | 0.635 | 0.6085 | 0.2635 | 0.2025 |
0.3785 | 28.0 | 700 | 0.6955 | 0.605 | 0.5718 | 3.1717 | 0.605 | 0.5973 | 0.3092 | 0.2624 |
0.3785 | 29.0 | 725 | 0.7951 | 0.585 | 0.5869 | 3.2346 | 0.585 | 0.5777 | 0.2849 | 0.3039 |
0.3785 | 30.0 | 750 | 0.5426 | 0.655 | 0.4898 | 2.6384 | 0.655 | 0.6295 | 0.2758 | 0.1781 |
0.3785 | 31.0 | 775 | 0.7721 | 0.6 | 0.5956 | 3.5480 | 0.6 | 0.5717 | 0.2908 | 0.2548 |
0.3785 | 32.0 | 800 | 0.6102 | 0.65 | 0.4974 | 2.6613 | 0.65 | 0.6348 | 0.2529 | 0.1661 |
0.3785 | 33.0 | 825 | 0.7592 | 0.62 | 0.5666 | 3.5174 | 0.62 | 0.5736 | 0.2821 | 0.2752 |
0.3785 | 34.0 | 850 | 0.6516 | 0.655 | 0.5283 | 3.1254 | 0.655 | 0.6341 | 0.2596 | 0.1954 |
0.3785 | 35.0 | 875 | 0.6626 | 0.65 | 0.5329 | 2.9794 | 0.65 | 0.6120 | 0.2793 | 0.2390 |
0.3785 | 36.0 | 900 | 0.6939 | 0.66 | 0.5190 | 3.4020 | 0.66 | 0.6258 | 0.2473 | 0.1785 |
0.3785 | 37.0 | 925 | 0.7580 | 0.605 | 0.5970 | 3.1545 | 0.605 | 0.5466 | 0.2996 | 0.2424 |
0.3785 | 38.0 | 950 | 0.6088 | 0.655 | 0.5187 | 2.7205 | 0.655 | 0.6457 | 0.2636 | 0.2413 |
0.3785 | 39.0 | 975 | 0.7394 | 0.605 | 0.5815 | 2.8167 | 0.605 | 0.5798 | 0.2975 | 0.2782 |
0.0886 | 40.0 | 1000 | 0.6910 | 0.65 | 0.5015 | 2.9680 | 0.65 | 0.5993 | 0.2697 | 0.1652 |
0.0886 | 41.0 | 1025 | 0.6618 | 0.635 | 0.5752 | 3.5088 | 0.635 | 0.5937 | 0.2929 | 0.2653 |
0.0886 | 42.0 | 1050 | 0.7742 | 0.6 | 0.5556 | 3.5946 | 0.6 | 0.5644 | 0.2556 | 0.1974 |
0.0886 | 43.0 | 1075 | 0.7379 | 0.62 | 0.5589 | 2.7882 | 0.62 | 0.6042 | 0.3169 | 0.2143 |
0.0886 | 44.0 | 1100 | 0.6702 | 0.64 | 0.5359 | 2.9335 | 0.64 | 0.6088 | 0.2765 | 0.2133 |
0.0886 | 45.0 | 1125 | 0.8900 | 0.585 | 0.6173 | 3.8349 | 0.585 | 0.5639 | 0.2934 | 0.2364 |
0.0886 | 46.0 | 1150 | 0.7800 | 0.62 | 0.5707 | 3.2446 | 0.62 | 0.6171 | 0.3002 | 0.2156 |
0.0886 | 47.0 | 1175 | 0.8554 | 0.57 | 0.6256 | 3.6828 | 0.57 | 0.5583 | 0.3191 | 0.2611 |
0.0886 | 48.0 | 1200 | 0.6486 | 0.67 | 0.4911 | 3.4792 | 0.67 | 0.6449 | 0.2741 | 0.1870 |
0.0886 | 49.0 | 1225 | 0.7315 | 0.59 | 0.5829 | 3.4916 | 0.59 | 0.5963 | 0.2720 | 0.2101 |
0.0886 | 50.0 | 1250 | 0.6939 | 0.665 | 0.5022 | 2.9091 | 0.665 | 0.6362 | 0.2743 | 0.1829 |
0.0886 | 51.0 | 1275 | 0.7256 | 0.625 | 0.5687 | 3.4914 | 0.625 | 0.5740 | 0.2943 | 0.2493 |
0.0886 | 52.0 | 1300 | 0.6374 | 0.66 | 0.5144 | 2.7071 | 0.66 | 0.6297 | 0.2529 | 0.2006 |
0.0886 | 53.0 | 1325 | 0.7862 | 0.645 | 0.5470 | 3.2902 | 0.645 | 0.6385 | 0.2899 | 0.2053 |
0.0886 | 54.0 | 1350 | 0.7717 | 0.63 | 0.5762 | 3.8614 | 0.63 | 0.6027 | 0.2954 | 0.2150 |
0.0886 | 55.0 | 1375 | 0.6664 | 0.675 | 0.5120 | 3.1014 | 0.675 | 0.6582 | 0.2850 | 0.1842 |
0.0886 | 56.0 | 1400 | 0.6957 | 0.615 | 0.5602 | 3.0253 | 0.615 | 0.5977 | 0.3033 | 0.2229 |
0.0886 | 57.0 | 1425 | 0.6794 | 0.64 | 0.5581 | 3.0174 | 0.64 | 0.6205 | 0.2802 | 0.2056 |
0.0886 | 58.0 | 1450 | 0.6345 | 0.655 | 0.5162 | 2.7909 | 0.655 | 0.6422 | 0.2856 | 0.2789 |
0.0886 | 59.0 | 1475 | 0.6447 | 0.655 | 0.5271 | 2.9860 | 0.655 | 0.6432 | 0.2735 | 0.1774 |
0.0219 | 60.0 | 1500 | 0.7042 | 0.665 | 0.5404 | 3.1132 | 0.665 | 0.6268 | 0.2871 | 0.2981 |
0.0219 | 61.0 | 1525 | 0.7288 | 0.64 | 0.5486 | 3.3084 | 0.64 | 0.6225 | 0.2869 | 0.1861 |
0.0219 | 62.0 | 1550 | 0.6605 | 0.69 | 0.5078 | 2.9123 | 0.69 | 0.6642 | 0.2668 | 0.2487 |
0.0219 | 63.0 | 1575 | 0.5905 | 0.715 | 0.4712 | 3.4707 | 0.715 | 0.7013 | 0.2548 | 0.2257 |
0.0219 | 64.0 | 1600 | 0.6209 | 0.69 | 0.4940 | 2.6873 | 0.69 | 0.6770 | 0.2771 | 0.2263 |
0.0219 | 65.0 | 1625 | 0.6039 | 0.68 | 0.4914 | 2.6448 | 0.68 | 0.6620 | 0.2926 | 0.2184 |
0.0219 | 66.0 | 1650 | 0.5985 | 0.69 | 0.4918 | 2.7592 | 0.69 | 0.6757 | 0.2844 | 0.2181 |
0.0219 | 67.0 | 1675 | 0.5955 | 0.69 | 0.4903 | 2.7566 | 0.69 | 0.6757 | 0.2617 | 0.2227 |
0.0219 | 68.0 | 1700 | 0.5944 | 0.69 | 0.4898 | 2.7730 | 0.69 | 0.6757 | 0.2683 | 0.2211 |
0.0219 | 69.0 | 1725 | 0.5934 | 0.695 | 0.4893 | 2.7575 | 0.695 | 0.6823 | 0.2666 | 0.2171 |
0.0219 | 70.0 | 1750 | 0.5913 | 0.695 | 0.4890 | 2.7043 | 0.695 | 0.6823 | 0.2649 | 0.2160 |
0.0219 | 71.0 | 1775 | 0.5904 | 0.69 | 0.4888 | 2.7476 | 0.69 | 0.6742 | 0.2718 | 0.2163 |
0.0219 | 72.0 | 1800 | 0.5895 | 0.69 | 0.4883 | 2.7463 | 0.69 | 0.6742 | 0.2714 | 0.2160 |
0.0219 | 73.0 | 1825 | 0.5882 | 0.69 | 0.4877 | 2.7478 | 0.69 | 0.6742 | 0.2779 | 0.2171 |
0.0219 | 74.0 | 1850 | 0.5878 | 0.69 | 0.4876 | 2.7489 | 0.69 | 0.6742 | 0.2813 | 0.2169 |
0.0219 | 75.0 | 1875 | 0.5879 | 0.69 | 0.4871 | 2.7592 | 0.69 | 0.6742 | 0.2765 | 0.2185 |
0.0219 | 76.0 | 1900 | 0.5868 | 0.69 | 0.4870 | 2.8058 | 0.69 | 0.6742 | 0.2670 | 0.2183 |
0.0219 | 77.0 | 1925 | 0.5843 | 0.69 | 0.4864 | 2.8037 | 0.69 | 0.6745 | 0.2764 | 0.2185 |
0.0219 | 78.0 | 1950 | 0.5844 | 0.69 | 0.4862 | 2.8040 | 0.69 | 0.6745 | 0.2788 | 0.2191 |
0.0219 | 79.0 | 1975 | 0.5831 | 0.69 | 0.4857 | 2.8018 | 0.69 | 0.6745 | 0.2655 | 0.2178 |
0.0013 | 80.0 | 2000 | 0.5846 | 0.69 | 0.4858 | 2.8022 | 0.69 | 0.6745 | 0.2633 | 0.2182 |
0.0013 | 81.0 | 2025 | 0.5821 | 0.69 | 0.4851 | 2.8020 | 0.69 | 0.6745 | 0.2750 | 0.2177 |
0.0013 | 82.0 | 2050 | 0.5826 | 0.685 | 0.4852 | 2.8013 | 0.685 | 0.6713 | 0.2728 | 0.2180 |
0.0013 | 83.0 | 2075 | 0.5821 | 0.685 | 0.4851 | 2.8005 | 0.685 | 0.6713 | 0.2705 | 0.2179 |
0.0013 | 84.0 | 2100 | 0.5817 | 0.685 | 0.4850 | 2.8007 | 0.685 | 0.6713 | 0.2773 | 0.2180 |
0.0013 | 85.0 | 2125 | 0.5814 | 0.685 | 0.4849 | 2.7998 | 0.685 | 0.6713 | 0.2740 | 0.2176 |
0.0013 | 86.0 | 2150 | 0.5814 | 0.685 | 0.4848 | 2.7997 | 0.685 | 0.6713 | 0.2686 | 0.2174 |
0.0013 | 87.0 | 2175 | 0.5807 | 0.68 | 0.4847 | 2.7994 | 0.68 | 0.6624 | 0.2658 | 0.2186 |
0.0013 | 88.0 | 2200 | 0.5803 | 0.68 | 0.4845 | 2.7992 | 0.68 | 0.6624 | 0.2703 | 0.2180 |
0.0013 | 89.0 | 2225 | 0.5805 | 0.68 | 0.4846 | 2.7990 | 0.68 | 0.6624 | 0.2632 | 0.2194 |
0.0013 | 90.0 | 2250 | 0.5803 | 0.685 | 0.4846 | 2.7979 | 0.685 | 0.6703 | 0.2596 | 0.2183 |
0.0013 | 91.0 | 2275 | 0.5805 | 0.685 | 0.4847 | 2.7980 | 0.685 | 0.6703 | 0.2674 | 0.2183 |
0.0013 | 92.0 | 2300 | 0.5805 | 0.685 | 0.4846 | 2.7993 | 0.685 | 0.6703 | 0.2562 | 0.2181 |
0.0013 | 93.0 | 2325 | 0.5802 | 0.68 | 0.4847 | 2.7974 | 0.68 | 0.6624 | 0.2598 | 0.2182 |
0.0013 | 94.0 | 2350 | 0.5800 | 0.68 | 0.4846 | 2.7981 | 0.68 | 0.6624 | 0.2613 | 0.2175 |
0.0013 | 95.0 | 2375 | 0.5796 | 0.68 | 0.4846 | 2.7985 | 0.68 | 0.6624 | 0.2589 | 0.2179 |
0.0013 | 96.0 | 2400 | 0.5799 | 0.68 | 0.4846 | 2.7980 | 0.68 | 0.6624 | 0.2560 | 0.2183 |
0.0013 | 97.0 | 2425 | 0.5796 | 0.68 | 0.4846 | 2.7978 | 0.68 | 0.6624 | 0.2588 | 0.2175 |
0.0013 | 98.0 | 2450 | 0.5798 | 0.68 | 0.4846 | 2.7977 | 0.68 | 0.6624 | 0.2589 | 0.2179 |
0.0013 | 99.0 | 2475 | 0.5797 | 0.68 | 0.4846 | 2.7977 | 0.68 | 0.6624 | 0.2589 | 0.2178 |
0.0003 | 100.0 | 2500 | 0.5797 | 0.68 | 0.4846 | 2.7977 | 0.68 | 0.6624 | 0.2589 | 0.2179 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 165
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.