6_e_200-tiny_tobacco3482_kd_CEKD_t1.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4277
- Accuracy: 0.835
- Brier Loss: 0.2653
- Nll: 1.5700
- F1 Micro: 0.835
- F1 Macro: 0.8164
- Ece: 0.1805
- Aurc: 0.0632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 1.6826 | 0.23 | 0.8622 | 4.7953 | 0.23 | 0.1892 | 0.2929 | 0.7651 |
No log | 2.0 | 50 | 1.0374 | 0.53 | 0.6004 | 2.7646 | 0.53 | 0.4280 | 0.2624 | 0.2619 |
No log | 3.0 | 75 | 0.8158 | 0.665 | 0.4678 | 2.4034 | 0.665 | 0.5565 | 0.2488 | 0.1416 |
No log | 4.0 | 100 | 0.6879 | 0.72 | 0.3838 | 1.5355 | 0.72 | 0.6873 | 0.2297 | 0.1064 |
No log | 5.0 | 125 | 0.6511 | 0.775 | 0.3538 | 1.5183 | 0.775 | 0.7285 | 0.2235 | 0.0915 |
No log | 6.0 | 150 | 0.7310 | 0.755 | 0.3579 | 1.3899 | 0.755 | 0.7257 | 0.2190 | 0.0926 |
No log | 7.0 | 175 | 0.5698 | 0.795 | 0.3246 | 1.3920 | 0.795 | 0.7691 | 0.2251 | 0.0956 |
No log | 8.0 | 200 | 0.5675 | 0.805 | 0.3064 | 1.4278 | 0.805 | 0.7733 | 0.2093 | 0.0655 |
No log | 9.0 | 225 | 0.5986 | 0.8 | 0.3356 | 1.5317 | 0.8000 | 0.7890 | 0.2249 | 0.0913 |
No log | 10.0 | 250 | 0.6158 | 0.755 | 0.3475 | 1.5027 | 0.755 | 0.7340 | 0.2152 | 0.0782 |
No log | 11.0 | 275 | 0.5353 | 0.815 | 0.3037 | 1.6003 | 0.815 | 0.8143 | 0.2305 | 0.0749 |
No log | 12.0 | 300 | 0.5460 | 0.825 | 0.3008 | 1.7407 | 0.825 | 0.8070 | 0.2378 | 0.0856 |
No log | 13.0 | 325 | 0.4905 | 0.83 | 0.2787 | 1.1328 | 0.83 | 0.8099 | 0.2344 | 0.0481 |
No log | 14.0 | 350 | 0.4913 | 0.795 | 0.2881 | 1.2261 | 0.795 | 0.7521 | 0.2121 | 0.0661 |
No log | 15.0 | 375 | 0.4773 | 0.835 | 0.2753 | 1.2716 | 0.835 | 0.8140 | 0.2125 | 0.0636 |
No log | 16.0 | 400 | 0.4848 | 0.84 | 0.2751 | 1.5983 | 0.8400 | 0.8139 | 0.2195 | 0.0707 |
No log | 17.0 | 425 | 0.4994 | 0.805 | 0.2886 | 1.5637 | 0.805 | 0.7689 | 0.2049 | 0.0617 |
No log | 18.0 | 450 | 0.4610 | 0.835 | 0.2871 | 1.3906 | 0.835 | 0.8122 | 0.2175 | 0.0675 |
No log | 19.0 | 475 | 0.4594 | 0.84 | 0.2669 | 1.2217 | 0.8400 | 0.8214 | 0.2022 | 0.0516 |
0.4534 | 20.0 | 500 | 0.4793 | 0.815 | 0.2874 | 1.4445 | 0.815 | 0.7965 | 0.2024 | 0.0641 |
0.4534 | 21.0 | 525 | 0.5185 | 0.785 | 0.3215 | 1.8358 | 0.785 | 0.7743 | 0.2250 | 0.0850 |
0.4534 | 22.0 | 550 | 0.4339 | 0.83 | 0.2635 | 1.2137 | 0.83 | 0.8200 | 0.1944 | 0.0610 |
0.4534 | 23.0 | 575 | 0.4640 | 0.825 | 0.2770 | 1.4137 | 0.825 | 0.8086 | 0.1800 | 0.0674 |
0.4534 | 24.0 | 600 | 0.4528 | 0.825 | 0.2692 | 1.3148 | 0.825 | 0.8077 | 0.1912 | 0.0678 |
0.4534 | 25.0 | 625 | 0.4361 | 0.84 | 0.2600 | 1.4205 | 0.8400 | 0.8278 | 0.2066 | 0.0534 |
0.4534 | 26.0 | 650 | 0.4239 | 0.835 | 0.2590 | 1.2112 | 0.835 | 0.8224 | 0.1850 | 0.0544 |
0.4534 | 27.0 | 675 | 0.4294 | 0.82 | 0.2636 | 1.2671 | 0.82 | 0.8023 | 0.1866 | 0.0619 |
0.4534 | 28.0 | 700 | 0.4327 | 0.84 | 0.2633 | 1.3084 | 0.8400 | 0.8283 | 0.1954 | 0.0628 |
0.4534 | 29.0 | 725 | 0.4309 | 0.825 | 0.2640 | 1.4275 | 0.825 | 0.8022 | 0.2117 | 0.0667 |
0.4534 | 30.0 | 750 | 0.4299 | 0.83 | 0.2636 | 1.3161 | 0.83 | 0.8103 | 0.2110 | 0.0620 |
0.4534 | 31.0 | 775 | 0.4345 | 0.835 | 0.2634 | 1.4605 | 0.835 | 0.8269 | 0.1998 | 0.0562 |
0.4534 | 32.0 | 800 | 0.4404 | 0.83 | 0.2743 | 1.3965 | 0.83 | 0.8077 | 0.2198 | 0.0669 |
0.4534 | 33.0 | 825 | 0.4254 | 0.83 | 0.2614 | 1.3734 | 0.83 | 0.8133 | 0.1990 | 0.0567 |
0.4534 | 34.0 | 850 | 0.4271 | 0.835 | 0.2632 | 1.3963 | 0.835 | 0.8164 | 0.1932 | 0.0649 |
0.4534 | 35.0 | 875 | 0.4284 | 0.835 | 0.2636 | 1.3713 | 0.835 | 0.8164 | 0.2127 | 0.0634 |
0.4534 | 36.0 | 900 | 0.4262 | 0.835 | 0.2628 | 1.4403 | 0.835 | 0.8164 | 0.1926 | 0.0649 |
0.4534 | 37.0 | 925 | 0.4253 | 0.835 | 0.2621 | 1.3813 | 0.835 | 0.8164 | 0.2015 | 0.0628 |
0.4534 | 38.0 | 950 | 0.4262 | 0.835 | 0.2626 | 1.4528 | 0.835 | 0.8164 | 0.1971 | 0.0628 |
0.4534 | 39.0 | 975 | 0.4271 | 0.835 | 0.2629 | 1.4410 | 0.835 | 0.8164 | 0.1933 | 0.0627 |
0.0663 | 40.0 | 1000 | 0.4283 | 0.835 | 0.2639 | 1.4647 | 0.835 | 0.8164 | 0.1996 | 0.0631 |
0.0663 | 41.0 | 1025 | 0.4272 | 0.835 | 0.2639 | 1.4417 | 0.835 | 0.8164 | 0.2088 | 0.0630 |
0.0663 | 42.0 | 1050 | 0.4276 | 0.835 | 0.2640 | 1.3976 | 0.835 | 0.8164 | 0.1992 | 0.0634 |
0.0663 | 43.0 | 1075 | 0.4270 | 0.835 | 0.2633 | 1.4392 | 0.835 | 0.8164 | 0.1892 | 0.0628 |
0.0663 | 44.0 | 1100 | 0.4264 | 0.835 | 0.2635 | 1.4429 | 0.835 | 0.8164 | 0.1885 | 0.0631 |
0.0663 | 45.0 | 1125 | 0.4269 | 0.835 | 0.2637 | 1.4461 | 0.835 | 0.8164 | 0.1974 | 0.0629 |
0.0663 | 46.0 | 1150 | 0.4268 | 0.835 | 0.2636 | 1.4415 | 0.835 | 0.8164 | 0.1866 | 0.0625 |
0.0663 | 47.0 | 1175 | 0.4269 | 0.835 | 0.2641 | 1.4646 | 0.835 | 0.8164 | 0.1812 | 0.0636 |
0.0663 | 48.0 | 1200 | 0.4271 | 0.835 | 0.2639 | 1.3990 | 0.835 | 0.8164 | 0.1865 | 0.0631 |
0.0663 | 49.0 | 1225 | 0.4267 | 0.835 | 0.2639 | 1.4474 | 0.835 | 0.8164 | 0.1946 | 0.0629 |
0.0663 | 50.0 | 1250 | 0.4273 | 0.835 | 0.2642 | 1.4492 | 0.835 | 0.8164 | 0.1802 | 0.0631 |
0.0663 | 51.0 | 1275 | 0.4272 | 0.835 | 0.2644 | 1.4475 | 0.835 | 0.8164 | 0.1942 | 0.0630 |
0.0663 | 52.0 | 1300 | 0.4283 | 0.835 | 0.2648 | 1.5157 | 0.835 | 0.8164 | 0.1963 | 0.0635 |
0.0663 | 53.0 | 1325 | 0.4271 | 0.835 | 0.2643 | 1.5046 | 0.835 | 0.8164 | 0.1955 | 0.0633 |
0.0663 | 54.0 | 1350 | 0.4271 | 0.835 | 0.2642 | 1.4629 | 0.835 | 0.8164 | 0.1790 | 0.0617 |
0.0663 | 55.0 | 1375 | 0.4278 | 0.835 | 0.2649 | 1.5752 | 0.835 | 0.8164 | 0.2007 | 0.0635 |
0.0663 | 56.0 | 1400 | 0.4280 | 0.835 | 0.2648 | 1.5165 | 0.835 | 0.8164 | 0.1706 | 0.0631 |
0.0663 | 57.0 | 1425 | 0.4275 | 0.835 | 0.2644 | 1.5134 | 0.835 | 0.8164 | 0.1864 | 0.0629 |
0.0663 | 58.0 | 1450 | 0.4270 | 0.835 | 0.2643 | 1.5088 | 0.835 | 0.8164 | 0.1883 | 0.0630 |
0.0663 | 59.0 | 1475 | 0.4273 | 0.835 | 0.2644 | 1.5111 | 0.835 | 0.8164 | 0.1951 | 0.0630 |
0.0615 | 60.0 | 1500 | 0.4281 | 0.835 | 0.2651 | 1.5727 | 0.835 | 0.8164 | 0.2084 | 0.0630 |
0.0615 | 61.0 | 1525 | 0.4271 | 0.835 | 0.2647 | 1.5198 | 0.835 | 0.8164 | 0.1957 | 0.0631 |
0.0615 | 62.0 | 1550 | 0.4276 | 0.835 | 0.2649 | 1.5139 | 0.835 | 0.8164 | 0.1969 | 0.0630 |
0.0615 | 63.0 | 1575 | 0.4269 | 0.835 | 0.2646 | 1.4579 | 0.835 | 0.8164 | 0.1802 | 0.0629 |
0.0615 | 64.0 | 1600 | 0.4275 | 0.835 | 0.2648 | 1.5144 | 0.835 | 0.8164 | 0.2006 | 0.0632 |
0.0615 | 65.0 | 1625 | 0.4276 | 0.835 | 0.2649 | 1.5129 | 0.835 | 0.8164 | 0.1846 | 0.0632 |
0.0615 | 66.0 | 1650 | 0.4272 | 0.835 | 0.2647 | 1.5165 | 0.835 | 0.8164 | 0.1796 | 0.0629 |
0.0615 | 67.0 | 1675 | 0.4273 | 0.835 | 0.2647 | 1.5141 | 0.835 | 0.8164 | 0.1882 | 0.0631 |
0.0615 | 68.0 | 1700 | 0.4276 | 0.835 | 0.2649 | 1.5146 | 0.835 | 0.8164 | 0.1799 | 0.0631 |
0.0615 | 69.0 | 1725 | 0.4275 | 0.835 | 0.2649 | 1.5215 | 0.835 | 0.8164 | 0.1799 | 0.0631 |
0.0615 | 70.0 | 1750 | 0.4275 | 0.835 | 0.2647 | 1.5124 | 0.835 | 0.8164 | 0.1884 | 0.0632 |
0.0615 | 71.0 | 1775 | 0.4278 | 0.835 | 0.2652 | 1.5245 | 0.835 | 0.8164 | 0.1800 | 0.0631 |
0.0615 | 72.0 | 1800 | 0.4277 | 0.835 | 0.2650 | 1.5169 | 0.835 | 0.8164 | 0.1802 | 0.0631 |
0.0615 | 73.0 | 1825 | 0.4277 | 0.835 | 0.2651 | 1.5282 | 0.835 | 0.8164 | 0.1804 | 0.0633 |
0.0615 | 74.0 | 1850 | 0.4273 | 0.835 | 0.2650 | 1.5156 | 0.835 | 0.8164 | 0.1804 | 0.0632 |
0.0615 | 75.0 | 1875 | 0.4278 | 0.835 | 0.2653 | 1.5706 | 0.835 | 0.8164 | 0.1804 | 0.0632 |
0.0615 | 76.0 | 1900 | 0.4275 | 0.835 | 0.2651 | 1.5337 | 0.835 | 0.8164 | 0.1807 | 0.0633 |
0.0615 | 77.0 | 1925 | 0.4276 | 0.835 | 0.2652 | 1.5357 | 0.835 | 0.8164 | 0.1804 | 0.0633 |
0.0615 | 78.0 | 1950 | 0.4275 | 0.835 | 0.2651 | 1.5701 | 0.835 | 0.8164 | 0.1805 | 0.0633 |
0.0615 | 79.0 | 1975 | 0.4277 | 0.835 | 0.2651 | 1.5161 | 0.835 | 0.8164 | 0.1807 | 0.0633 |
0.0614 | 80.0 | 2000 | 0.4278 | 0.835 | 0.2653 | 1.5709 | 0.835 | 0.8164 | 0.1808 | 0.0632 |
0.0614 | 81.0 | 2025 | 0.4278 | 0.835 | 0.2653 | 1.5703 | 0.835 | 0.8164 | 0.1804 | 0.0632 |
0.0614 | 82.0 | 2050 | 0.4278 | 0.835 | 0.2653 | 1.5700 | 0.835 | 0.8164 | 0.1806 | 0.0633 |
0.0614 | 83.0 | 2075 | 0.4277 | 0.835 | 0.2652 | 1.5700 | 0.835 | 0.8164 | 0.1803 | 0.0631 |
0.0614 | 84.0 | 2100 | 0.4276 | 0.835 | 0.2652 | 1.5694 | 0.835 | 0.8164 | 0.1804 | 0.0632 |
0.0614 | 85.0 | 2125 | 0.4275 | 0.835 | 0.2652 | 1.5702 | 0.835 | 0.8164 | 0.1807 | 0.0633 |
0.0614 | 86.0 | 2150 | 0.4276 | 0.835 | 0.2652 | 1.5699 | 0.835 | 0.8164 | 0.1805 | 0.0633 |
0.0614 | 87.0 | 2175 | 0.4277 | 0.835 | 0.2653 | 1.5703 | 0.835 | 0.8164 | 0.1805 | 0.0633 |
0.0614 | 88.0 | 2200 | 0.4277 | 0.835 | 0.2652 | 1.5702 | 0.835 | 0.8164 | 0.1882 | 0.0632 |
0.0614 | 89.0 | 2225 | 0.4277 | 0.835 | 0.2653 | 1.5702 | 0.835 | 0.8164 | 0.1806 | 0.0633 |
0.0614 | 90.0 | 2250 | 0.4276 | 0.835 | 0.2653 | 1.5696 | 0.835 | 0.8164 | 0.1806 | 0.0633 |
0.0614 | 91.0 | 2275 | 0.4277 | 0.835 | 0.2653 | 1.5698 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 92.0 | 2300 | 0.4276 | 0.835 | 0.2652 | 1.5699 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 93.0 | 2325 | 0.4277 | 0.835 | 0.2653 | 1.5700 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 94.0 | 2350 | 0.4276 | 0.835 | 0.2653 | 1.5698 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 95.0 | 2375 | 0.4277 | 0.835 | 0.2653 | 1.5699 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 96.0 | 2400 | 0.4276 | 0.835 | 0.2653 | 1.5700 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 97.0 | 2425 | 0.4277 | 0.835 | 0.2653 | 1.5699 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 98.0 | 2450 | 0.4276 | 0.835 | 0.2653 | 1.5699 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 99.0 | 2475 | 0.4277 | 0.835 | 0.2653 | 1.5700 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
0.0614 | 100.0 | 2500 | 0.4277 | 0.835 | 0.2653 | 1.5700 | 0.835 | 0.8164 | 0.1805 | 0.0632 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.