Edit model card

6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.9

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5583
  • Accuracy: 0.82
  • Brier Loss: 0.2563
  • Nll: 1.8898
  • F1 Micro: 0.82
  • F1 Macro: 0.8009
  • Ece: 0.1578
  • Aurc: 0.0530

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 25 1.9764 0.23 0.8621 4.6756 0.23 0.1902 0.2733 0.7604
No log 2.0 50 1.2764 0.535 0.5973 2.7212 0.535 0.4337 0.2769 0.2592
No log 3.0 75 0.9774 0.68 0.4478 2.1874 0.68 0.5915 0.2144 0.1334
No log 4.0 100 0.8047 0.755 0.3617 1.4629 0.755 0.7257 0.1850 0.0888
No log 5.0 125 0.7616 0.765 0.3363 1.4885 0.765 0.7391 0.2017 0.0843
No log 6.0 150 1.0029 0.72 0.4200 1.6550 0.72 0.7047 0.2303 0.1169
No log 7.0 175 0.6286 0.825 0.2766 1.2493 0.825 0.7930 0.1954 0.0646
No log 8.0 200 0.6859 0.82 0.2857 1.4847 0.82 0.7971 0.1837 0.0699
No log 9.0 225 0.6365 0.81 0.2765 1.1457 0.81 0.7913 0.1604 0.0669
No log 10.0 250 0.6085 0.81 0.2614 1.5809 0.81 0.7928 0.1874 0.0536
No log 11.0 275 0.5900 0.84 0.2620 1.1457 0.8400 0.8308 0.1695 0.0674
No log 12.0 300 0.8544 0.75 0.3667 1.9577 0.75 0.7330 0.1988 0.1329
No log 13.0 325 0.5265 0.845 0.2278 1.2521 0.845 0.8209 0.1518 0.0399
No log 14.0 350 0.5702 0.815 0.2567 1.5233 0.815 0.8032 0.1551 0.0519
No log 15.0 375 0.5933 0.845 0.2581 1.4776 0.845 0.8341 0.1659 0.0738
No log 16.0 400 0.5697 0.84 0.2496 1.6732 0.8400 0.8235 0.1470 0.0557
No log 17.0 425 0.5471 0.825 0.2428 1.7010 0.825 0.8093 0.1406 0.0461
No log 18.0 450 0.5696 0.825 0.2546 1.4095 0.825 0.7977 0.1461 0.0612
No log 19.0 475 0.6544 0.805 0.2959 1.8251 0.805 0.7970 0.1681 0.0605
0.4416 20.0 500 0.5113 0.83 0.2327 1.4103 0.83 0.8093 0.1380 0.0541
0.4416 21.0 525 0.5255 0.84 0.2375 1.6750 0.8400 0.8220 0.1320 0.0462
0.4416 22.0 550 0.5889 0.835 0.2681 1.7850 0.835 0.8242 0.1507 0.0683
0.4416 23.0 575 0.5456 0.835 0.2492 1.8481 0.835 0.8137 0.1716 0.0550
0.4416 24.0 600 0.5661 0.83 0.2611 1.8434 0.83 0.8156 0.1618 0.0591
0.4416 25.0 625 0.5444 0.83 0.2484 1.7579 0.83 0.8091 0.1478 0.0530
0.4416 26.0 650 0.5418 0.83 0.2503 1.7188 0.83 0.8125 0.1564 0.0484
0.4416 27.0 675 0.5532 0.835 0.2540 1.8931 0.835 0.8146 0.1694 0.0514
0.4416 28.0 700 0.5492 0.835 0.2518 1.8959 0.835 0.8155 0.1505 0.0495
0.4416 29.0 725 0.5478 0.825 0.2505 1.8907 0.825 0.8069 0.1548 0.0503
0.4416 30.0 750 0.5478 0.835 0.2510 1.8881 0.835 0.8178 0.1467 0.0521
0.4416 31.0 775 0.5472 0.825 0.2505 1.8888 0.825 0.8064 0.1527 0.0510
0.4416 32.0 800 0.5522 0.83 0.2527 1.8927 0.83 0.8126 0.1449 0.0520
0.4416 33.0 825 0.5513 0.825 0.2524 1.8989 0.825 0.8064 0.1625 0.0509
0.4416 34.0 850 0.5465 0.835 0.2504 1.8880 0.835 0.8148 0.1519 0.0520
0.4416 35.0 875 0.5489 0.825 0.2515 1.8866 0.825 0.8064 0.1538 0.0510
0.4416 36.0 900 0.5508 0.825 0.2521 1.8922 0.825 0.8053 0.1356 0.0526
0.4416 37.0 925 0.5495 0.825 0.2522 1.8881 0.825 0.8064 0.1517 0.0514
0.4416 38.0 950 0.5483 0.825 0.2514 1.8859 0.825 0.8064 0.1749 0.0511
0.4416 39.0 975 0.5508 0.825 0.2524 1.8868 0.825 0.8064 0.1459 0.0514
0.0519 40.0 1000 0.5519 0.825 0.2529 1.8862 0.825 0.8064 0.1532 0.0513
0.0519 41.0 1025 0.5522 0.825 0.2530 1.8882 0.825 0.8064 0.1665 0.0519
0.0519 42.0 1050 0.5507 0.825 0.2525 1.8870 0.825 0.8064 0.1613 0.0508
0.0519 43.0 1075 0.5528 0.825 0.2536 1.8884 0.825 0.8064 0.1634 0.0517
0.0519 44.0 1100 0.5520 0.825 0.2531 1.8879 0.825 0.8064 0.1519 0.0525
0.0519 45.0 1125 0.5524 0.825 0.2535 1.8876 0.825 0.8053 0.1582 0.0515
0.0519 46.0 1150 0.5525 0.825 0.2534 1.8867 0.825 0.8064 0.1592 0.0519
0.0519 47.0 1175 0.5532 0.825 0.2539 1.8875 0.825 0.8064 0.1621 0.0521
0.0519 48.0 1200 0.5540 0.825 0.2540 1.8865 0.825 0.8064 0.1502 0.0522
0.0519 49.0 1225 0.5523 0.825 0.2538 1.8268 0.825 0.8072 0.1625 0.0514
0.0519 50.0 1250 0.5535 0.825 0.2539 1.8871 0.825 0.8064 0.1684 0.0517
0.0519 51.0 1275 0.5526 0.825 0.2534 1.8850 0.825 0.8064 0.1621 0.0519
0.0519 52.0 1300 0.5543 0.825 0.2543 1.8865 0.825 0.8064 0.1429 0.0521
0.0519 53.0 1325 0.5526 0.825 0.2538 1.8866 0.825 0.8064 0.1613 0.0515
0.0519 54.0 1350 0.5530 0.82 0.2538 1.8877 0.82 0.8009 0.1620 0.0518
0.0519 55.0 1375 0.5550 0.825 0.2547 1.8872 0.825 0.8064 0.1567 0.0522
0.0519 56.0 1400 0.5565 0.825 0.2552 1.8859 0.825 0.8064 0.1400 0.0523
0.0519 57.0 1425 0.5552 0.825 0.2548 1.8874 0.825 0.8064 0.1543 0.0520
0.0519 58.0 1450 0.5537 0.825 0.2542 1.8860 0.825 0.8064 0.1531 0.0516
0.0519 59.0 1475 0.5559 0.825 0.2551 1.8879 0.825 0.8064 0.1564 0.0525
0.0508 60.0 1500 0.5548 0.825 0.2545 1.8866 0.825 0.8064 0.1526 0.0522
0.0508 61.0 1525 0.5557 0.825 0.2550 1.8884 0.825 0.8064 0.1443 0.0524
0.0508 62.0 1550 0.5548 0.82 0.2546 1.8874 0.82 0.8009 0.1709 0.0527
0.0508 63.0 1575 0.5556 0.825 0.2551 1.8899 0.825 0.8064 0.1606 0.0524
0.0508 64.0 1600 0.5562 0.825 0.2553 1.8872 0.825 0.8064 0.1467 0.0527
0.0508 65.0 1625 0.5569 0.825 0.2554 1.8879 0.825 0.8064 0.1537 0.0524
0.0508 66.0 1650 0.5567 0.825 0.2555 1.8873 0.825 0.8064 0.1601 0.0525
0.0508 67.0 1675 0.5556 0.825 0.2550 1.8878 0.825 0.8064 0.1601 0.0527
0.0508 68.0 1700 0.5570 0.825 0.2555 1.8879 0.825 0.8064 0.1679 0.0528
0.0508 69.0 1725 0.5560 0.825 0.2553 1.8886 0.825 0.8064 0.1525 0.0521
0.0508 70.0 1750 0.5562 0.825 0.2553 1.8878 0.825 0.8064 0.1531 0.0528
0.0508 71.0 1775 0.5572 0.82 0.2557 1.8883 0.82 0.8009 0.1718 0.0530
0.0508 72.0 1800 0.5567 0.82 0.2555 1.8888 0.82 0.8009 0.1630 0.0525
0.0508 73.0 1825 0.5571 0.825 0.2556 1.8882 0.825 0.8064 0.1598 0.0528
0.0508 74.0 1850 0.5580 0.825 0.2561 1.8901 0.825 0.8064 0.1543 0.0530
0.0508 75.0 1875 0.5579 0.82 0.2561 1.8892 0.82 0.8009 0.1721 0.0530
0.0508 76.0 1900 0.5574 0.82 0.2559 1.8892 0.82 0.8009 0.1636 0.0528
0.0508 77.0 1925 0.5569 0.82 0.2557 1.8393 0.82 0.8009 0.1634 0.0526
0.0508 78.0 1950 0.5572 0.82 0.2558 1.8887 0.82 0.8009 0.1637 0.0530
0.0508 79.0 1975 0.5578 0.82 0.2560 1.8888 0.82 0.8009 0.1579 0.0530
0.0507 80.0 2000 0.5577 0.82 0.2559 1.8889 0.82 0.8009 0.1578 0.0532
0.0507 81.0 2025 0.5578 0.82 0.2560 1.8889 0.82 0.8009 0.1578 0.0533
0.0507 82.0 2050 0.5579 0.825 0.2561 1.8891 0.825 0.8064 0.1602 0.0528
0.0507 83.0 2075 0.5581 0.825 0.2562 1.8894 0.825 0.8064 0.1544 0.0528
0.0507 84.0 2100 0.5579 0.82 0.2561 1.8894 0.82 0.8009 0.1581 0.0531
0.0507 85.0 2125 0.5580 0.82 0.2561 1.8896 0.82 0.8009 0.1578 0.0528
0.0507 86.0 2150 0.5581 0.82 0.2562 1.8891 0.82 0.8009 0.1580 0.0532
0.0507 87.0 2175 0.5582 0.82 0.2562 1.8467 0.82 0.8009 0.1581 0.0528
0.0507 88.0 2200 0.5583 0.82 0.2562 1.8891 0.82 0.8009 0.1580 0.0531
0.0507 89.0 2225 0.5584 0.815 0.2563 1.8894 0.815 0.7976 0.1608 0.0534
0.0507 90.0 2250 0.5578 0.82 0.2561 1.8894 0.82 0.8009 0.1578 0.0530
0.0507 91.0 2275 0.5584 0.815 0.2563 1.8896 0.815 0.7976 0.1607 0.0532
0.0507 92.0 2300 0.5583 0.82 0.2562 1.8893 0.82 0.8009 0.1581 0.0531
0.0507 93.0 2325 0.5582 0.82 0.2562 1.8898 0.82 0.8009 0.1579 0.0530
0.0507 94.0 2350 0.5582 0.82 0.2562 1.8392 0.82 0.8009 0.1578 0.0530
0.0507 95.0 2375 0.5584 0.82 0.2563 1.8897 0.82 0.8009 0.1582 0.0531
0.0507 96.0 2400 0.5582 0.82 0.2562 1.8898 0.82 0.8009 0.1578 0.0530
0.0507 97.0 2425 0.5583 0.82 0.2563 1.8896 0.82 0.8009 0.1580 0.0530
0.0507 98.0 2450 0.5582 0.82 0.2562 1.8898 0.82 0.8009 0.1578 0.0530
0.0507 99.0 2475 0.5583 0.82 0.2563 1.8898 0.82 0.8009 0.1578 0.0530
0.0507 100.0 2500 0.5583 0.82 0.2563 1.8898 0.82 0.8009 0.1578 0.0530

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.13.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.